首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The growing importance of mass spectrometry for the identification and characterization of bacterial protein toxins is a consequence of the improved sensitivity and specificity of mass spectrometry-based techniques, especially when these techniques are combined with affinity methods. Here we describe a novel method based on the use of immunoaffinity capture and matrix-assisted laser desorption ionization-time of flight mass spectrometry for selective purification and detection of staphylococcal enterotoxin B (SEB). SEB is a potent bacterial protein toxin responsible for food poisoning, as well as a potential biological warfare agent. Unambiguous detection of SEB at low-nanogram levels in complex matrices is thus an important objective. In this work, an affinity molecular probe was prepared by immobilizing anti-SEB antibody on the surface of para-toluene-sulfonyl-functionalized monodisperse magnetic particles and used to selectively isolate SEB. Immobilization and affinity capture procedures were optimized to maximize the density of anti-SEB immunoglobulin G and the amount of captured SEB, respectively, on the surface of magnetic beads. SEB could be detected directly “on beads” by placing the molecular probe on the matrix-assisted laser desorption ionization target plate or, alternatively, “off beads” after its acidic elution. Application of this method to complex biological matrices was demonstrated by selective detection of SEB present in different matrices, such as cultivation media of Staphylococcus aureus strains and raw milk samples.  相似文献   

2.
Detection of Staphylococcus enterotoxin B (SEB) by biomolecular interaction analysis mass spectrometry (BIA/MS) is presented in this work. The BIA/MS experiments were based on a surface plasmon resonance (SPR) MS immunoassay that detects affinity-captured SEB both via SPR and by means of exact and direct mass measurement by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Experiments were performed with standard samples and food samples to assess the BIA/MS limit of detection for SEB and to set the experimental parameters for proper quantitation. Single and double SPR referencing was performed to accurately estimate the amount of the bound toxin. Reproducible detection of 1 ng of SEB per ml, corresponding to affinity capture and MS analysis of approximately 500 amol of SEB, was readily achieved from both the standard and mushroom samples. A certain amount of SEB degradation was indicated by the signals in the mass spectra. The combination of MS with SPR-based methods of detection creates a unique approach capable of quantifying and qualitatively analyzing protein toxins from pathogenic organisms.  相似文献   

3.
Detection of Staphylococcus enterotoxin B (SEB) by biomolecular interaction analysis mass spectrometry (BIA/MS) is presented in this work. The BIA/MS experiments were based on a surface plasmon resonance (SPR) MS immunoassay that detects affinity-captured SEB both via SPR and by means of exact and direct mass measurement by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Experiments were performed with standard samples and food samples to assess the BIA/MS limit of detection for SEB and to set the experimental parameters for proper quantitation. Single and double SPR referencing was performed to accurately estimate the amount of the bound toxin. Reproducible detection of 1 ng of SEB per ml, corresponding to affinity capture and MS analysis of ~500 amol of SEB, was readily achieved from both the standard and mushroom samples. A certain amount of SEB degradation was indicated by the signals in the mass spectra. The combination of MS with SPR-based methods of detection creates a unique approach capable of quantifying and qualitatively analyzing protein toxins from pathogenic organisms.  相似文献   

4.
In this report, we describe a simple and accurate method to analyze restriction fragments using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The two complementary strands of restriction fragments are separated through hybridization to a capture probe, which is a single-stranded undigested fragment. Using the biotin–streptavidin linkage, the hybrid is immobilized on streptavidin-coated magnetic beads. After conditioning the captured restriction fragments, they are eluted from the probe and their molecular weights are determined. The proposed method greatly improves the quality, and reduces the complexity of the mass spectrum by analyzing only one of the complementary strands of restriction fragments.  相似文献   

5.
An alkaline phosphatase-bioreactive probe, in which the enzyme is covalently bound to the mass spectrometry target, has been developed for studies of phosphoproteins. The bioreactive probe was used in combination with affinity capture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to study hydrolysis of several phosphoproteins found in human saliva. Human salivary proteins were extracted from diluted human saliva with immobilized metal-affinity pipettes, which under defined conditions bound the phosphoproteins of interest preferentially over histatins. Phosphoproteins were eluted directly from the affinity pipettes to the bioreactive probe with diluted ammonium hydroxide, which provided conditions appropriate for hydrolysis by the alkaline phosphatase covalently bound to the probe surface. Results indicate the combination of metal-affinity pipette extraction, alkaline phosphatase-bioreactive probes, and matrix-assisted laser desorption/ionization mass spectrometry is an effective way to find and characterize phosphoproteins, known and unknown, in complex mixtures. Facile hydrolysis of human salivary phosphoproteins by the bioreactive probes was readily observed.  相似文献   

6.
Li C  Lee KH 《Analytical biochemistry》2004,333(2):381-388
In the context of proteomic research, affinity separations for the prefractionation of complex mixtures, such as cell lysates or human tissues, have become increasingly important. Microfluidic devices have shown significant potential to achieve fast analysis and low sample consumption. Here, we demonstrate the use of a microfluidic device to achieve affinity capture of albumin from human cerebrospinal fluid. Traditional photolithography and wet etching techniques were used to fabricate devices from borosilicate glass wafers. Monolithic porous polymer was prepared in a microfluidic channel by photopolymerization of glycidyl methacrylate and trimethylolpropane trimethacrylate. After derivatization with Cibacron-blue-3G-A, the modified polymer was used to achieve affinity capture of lysozyme and human albumin. Both fluorescence detection and matrix-assisted laser desorption ionization time of flight mass spectrometry were used to validate the results.  相似文献   

7.
An integrated analytical approach for the enrichment, detection, and sequencing of phosphopeptides using matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS) was developed. On the basis of C18-functionalized Fe3O4 nanoparticles, the enrichment method was designed not only to specifically trap phosphopeptides, but also nonphosphorylated peptides, both of which can be subsequently desorbed selectively and directly for MALDI-MS analysis without an elution step. Peptide binding is afforded by the C18-derivatization, whereas the highly selective capture of phosphopeptides is based on higher binding affinity afforded by additional metal chelating interaction between the Fe3O4 nanoparticles and the phosphate groups. Upon binding, the initial aqueous wash allows desalting, while a second and a third wash with high acetonitrile content coupled with diluted sulfuric acid and ammonia removes most of the bound nonphosphorylated peptides. Selective or sequential mapping of the peptides and phosphopeptides can, thus, be effected by spotting the washed nanoparticles onto the MALDI target plate along with judicious choice of matrices. The inclusion of phosphoric acid in a 2,5-dihydroxybenzoic acid matrix allows the desorption and detection of phosphopeptides, whereas an alpha-cyano-4-hydroxy-cinnamic acid matrix with formic acid allows only the desorption of nonphosphorylated peptides. The method used to enrich phosphopeptides prior to MS applications is more sensitive and tolerable to sodium dodecyl sulfate than IMAC. We have demonstrated the applicability of C18-functionalized Fe3O4 nanoparticles in the detection of in vitro phosphorylation sites on the myelin basic protein, and at least 17 phosphopeptides were identified, including one previously uncharacterized site.  相似文献   

8.
Consecutive enzymatic reactions on analytes affinity-bound to immobilized metal ion beads with subsequent direct analysis of the products by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have been used for detecting protein synthesis errors occuring at the N-terminus. The usefulness of this method was demonstrated by analyzing two commercially available recombinant HIV proteins with affinity tags at the N-terminus, and histatin-5, a peptide with multiple histidine residues. The high specificity, sensitivity, and speed of analysis make this method especially useful in obtaining N-terminal sequencing information of histidine-tagged recombinant proteins.  相似文献   

9.
The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of bacteriocins was investigated. A 30-s water wash of the sample on the MALDI-TOF MS probe was effective in removing contaminants of the analyte. This method was used for rapid detection of nisin, pediocin, brochocin A and B, and enterocin A and B from culture supernatants and for detection of enterocin B throughout its purification.  相似文献   

10.
The ability to combine a selective capture strategy with on chip MALDI-TOF analysis allows for rapid, sensitive analysis of a variety of different analytes. In this overview a series of applications of capture enhanced laser desorption ionization time of flight (CELDI-TOF) mass spectrometry are described. The key feature of the assay is an off-chip capture step that utilizes high affinity bacterial binding proteins to capture a selected ligand. This allows large volumes of sample to be used and provides for a concentration step prior to transfer to a gold chip for traditional mass spectral analysis. The approach can also be adapted to utilize specific antibody as the basis of the capture step. The direct and indirect CELDI-TOF assays are rapid, reproducible and can be a valuable proteomic tool for analysis of low abundance molecules present in complex mixtures like blood plasma.  相似文献   

11.
Novel mass spectrometric immunoassays (MSIAs) for the isolation and structural characterization of plasma apolipoprotein A-I (apoA-I), apoA-II, and apoE have been developed. The assays combine selective isolation of apolipoprotein species via affinity capture with mass-specific detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In application, plasma (from 50 microl of whole blood drawn from individuals, using finger lancet) was addressed with affinity pipette tips derivatized with antibodies toward the specific apolipoprotein. The time required for each assay was approximately 15 min, less if assays on multiple individuals were performed in parallel. In a brief study of five individuals, several recently reported apoA-II variants were identified and observed consistently in all individuals. Additionally, the apoE phenotype of E3/E3 was observed in three of the individuals, and E2/E3 and E3/E4 observed in the remaining two individuals, the latter of whom suffers from Alzheimer's disease. Overall, the MSIA approach offers a rapid, sensitive, and highly accurate means of profiling apolipoproteins from small volumes of plasma.  相似文献   

12.
13.
On-target affinity capture, enrichment and purification of biomolecules improve detection of specific analytes from complex biological samples in matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis. In this paper, we report a simple method for preparation of a self-assembled nitrilotriacetic acid (NTA) monolayer on gold surface which can be used as a MALDI-TOF-MS sample target specifically for recombinant oligohistidine-tagged proteins/peptides and phosphorylated peptides. The NTA functional groups are immobilized to the gold surface via the linkage of 1,8-octanedithiol which forms a self-assembled monolayer on gold. Characterization by X-ray photoelectron spectroscopy and MALDI analysis of the modified surface are described. The chemically modified surface shows strong affinity toward the analytes of interest, which allows effective removal of the common interferences, e.g. salts and detergents, and therefore leads to improved signal/noise ratio and detection limit. The use of the modified surface simplifies the sample preparation for MALDI analysis of these targeted analytes.  相似文献   

14.
Characterization of the major human milk fat globular membrane proteins was carried out using proteomic techniques comprising two-dimensional polyacrylamide gel electrophoresis, followed by in situ PNGase F and trypsin digestion. Matrix-assisted laser desorption/ionization quadrupole time-of-flight and electrospray ionization mass spectrometry identified seven major protein components: alpha-lactalbumin, lysozyme precursor, beta-casein, clusterin, lactotransferrin, polymeric immunoglobulin receptor precursor, and human milk fat globule EGF-factor 8 protein. Sequence information on the protein-associated glycans was determined by matrix-assisted laser desorption-ionization quadrupole time-of-flight hybrid mass spectrometry. This glycan analysis revealed interesting fucosylation branching patterns which may be influential in maternal protection of the newborn against bacterial and viral pathogenic attack.  相似文献   

15.
Nedelkov D  Nelson RW 《Proteomics》2001,1(11):1441-1446
Biomolecular interaction analysis mass spectrometry (BIA-MS) is a multiplexed bioanalytical approach used in analysis of proteins from complex biological mixtures. It utilizes surface-immobilized ligands for protein affinity retrieval, surface plasmon resonance for monitoring the ligand-protein interaction and matrix-assisted laser desorption/ionization-time of flight mass spectrometry for revealing the masses of the biomolecules retrieved by the ligand. In order to explore the utility of BIA-MS in delineation of multiprotein complexes, an in vivo assembled protein complex comprised of retinol binding protein (RBP) and transthyretin (TTR) was investigated. Antibodies to RBP and TTR were utilized as ligands in the analysis of the protein complex present in human plasma. The RBP-TTR complex was retrieved by the anti-RBP antibody as indicated by the presence of both RBP and TTR signals in the mass spectra. RBP signals were not observed in the mass spectra of the material retained on the anti-TTR derivatized surface. In addition, the mass-specific detection in BIA-MS allowed detection of RBP and TTR analyte variants.  相似文献   

16.
Huang SY  Hsu JL  Morrice NA  Wu CJ  Chen SH 《Proteomics》2004,4(7):1935-1938
Here we report that the addition of HCl or HNO(3) to the matrix at a limited concentration dramatically increases the signal-to-noise ratio of the matrix-assisted laser desorption/ionization mass spectrometry spectrum of phosphate-containing peptide mixtures such as those obtained from an immobilised metal affinity capture eluent or a phosphate-containing tryptic digest. These improved spectra permitted both peptide identification and the determination of protein phosphorylation sites. In comparison to existing methods for removing salts, this method requires less sample manipulation and thus less sample loss is expected.  相似文献   

17.
Sequencing DNA using mass spectrometry for ladder detection.   总被引:2,自引:1,他引:1       下载免费PDF全文
Sequencing of DNA fragments of 130 and 200 bp using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for DNA ladder detection was demonstrated. With further improvement in mass resolution and detection sensitivity, mass spectrometry shows great promise for routine DNA sequencing in the future.  相似文献   

18.
Binding proteins that have high affinities for mammalian plasma proteins that are expressed on the surface of bacteria have proven valuable for the purification and detection of several biologically important molecules from human and animal plasma or serum. In this study, we have isolated a high affinity albumin-binding molecule from a group G streptococcal isolate of bovine origin and have demonstrated that the isolated protein can be biotinylated without loss of binding activity and can be used as a tracer for quantification of human serum albumin (HSA). The binding protein can be immobilized and used as a selective capture reagent in a competitive ELISA format using a biotinylated HSA tracer. In this assay format, the sensitivity of detection for 50% inhibition of binding of HSA was less than 1 μg/ml. When attached to the bacterial surface, this binding protein can be used to deplete albumin from human plasma, as analyzed by surface-enhanced laser desorption ionization time of flight mass spectrometry.  相似文献   

19.
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses.  相似文献   

20.
《Journal of molecular biology》2019,431(21):4354-4367
To develop an antibody (Ab) therapeutic against staphylococcal enterotoxin B (SEB), a potential incapacitating bioterrorism agent and a major cause of food poisoning, we developed a “class T" anti-SEB neutralizing Ab (GC132) targeting an epitope on SEB distinct from that of previously developed “class M" Abs. A systematic engineering approach was applied to affinity-mature Ab GC132 to yield an optimized therapeutic candidate (GC132a) with sub-nanomolar binding affinity. Mapping of the binding interface by hydrogen–deuterium exchange coupled to mass spectrometry revealed that the class T epitope on SEB overlapped with the T-cell receptor binding site, whereas other evidence suggested that the class M epitope overlapped with the binding site for the major histocompatibility complex. In the IgG format, GC132a showed ∼ 50-fold more potent toxin-neutralizing efficacy than the best class M Ab in vitro, and fully protected mice from lethal challenge in a toxic shock post-exposure model. We also engineered bispecific Abs (bsAbs) that bound tetravalently by utilizing two class M binding sites and two class T binding sites. The bsAbs displayed enhanced toxin neutralization efficacy compared with the respective monospecific Ab subunits as well as a mixture of the two, indicating that enhanced efficacy was due to heterotypic tetravalent binding to two non-overlapping epitopes on SEB. Together, these results suggest that class T anti-SEB Ab GC132a is an excellent candidate for clinical development and for bsAb engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号