首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty young men trained the right knee extensors and flexors on an isokinetic dynamometer three times weekly over a 10-week period. During each session, 10 men in the slow training group completed three sets of 8 maximal contractions at a rate of 1.05 rad s-1, whereas the other 10, the fast group, completed three sets of 20 contractions at a rate of 4.19 rad s-1. Subjects wer pre- and post-tested for peak torque and power on an isokinetic dynamometer at 1.05, 3.14, and 4.19 rad s-1. Proportions of muscle fibre-types and fibre cross-sectional areas were determined from biopsy specimens taken before and after training from the right vastus lateralis. When testing was conducted at 1.05 rad s-1, the slow group improved (P less than 0.05) peak torque by 24.5 N m (8.5%), but no change was noted for the fast group. Power increased (P less than 0.05) by 32.7 W (13.6%) in the slow group and 5.5 W (2.5%) in the fast. At 3.14 rad s-1, both groups increased (P less than 0.05) peak torque and power. At 4.19 rad s-1, the fast group increased (P less than 0.05) peak torque by 30.0 N m (19.7%), whereas no training effect was observed in the slow group. There was no significant change in power in either group at 4.19 rad s-1. No significant changes were observed over the 10-week training period in percentages of type I, IIa and IIb fibres, but both groups showed significant increases (P less than 0.05) in type I and IIa fibre areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of an increased angle of excursion and isometric pre-activation on isokinetic torques of knee extensors was investigated in five male subjects, mean age 35.0 years, SD 9.6. Peak torque and isoangular torque at 0.52 rad from full knee extension (FKE) were measured when contractions were carried out at 3.14, 4.19 and 5.24 rad.s-1 starting: 1) from a standard knee angle (SA) of 1.57 rad from FKE, 2) from the same starting angle as SA, plus an isometric preload (P) equivalent to 25% of isometric maximal voluntary contraction and 3) from an increased angle of knee flexion (IA), 2.09 rad from FKE plus P. Surface integrated electromyograms (iEMG) of the vastus lateralis muscle in SA and IA + P were also recorded. The IA + P had the effect of increasing peak torque, as compared to SA, on average by 12.0%, SD 7.5% (P less than 0.001) at 3.14 rad.s-1, 19.5%, SD 5.5% (P less than 0.001) at 4.19 rad.s-1, 21.6%, SD 10.7% (P less than 0.001) at 5.24 rad.s-1 and of increasing mean iEMG by 15.7%, SD 7.0% (P less than 0.001) at 5.24 rad.s-1. The IA + P also had the effect of increasing the angle from FKE at which peak torque occurred: from means of 0.80 rad, SD 0.11 to 1.00 rad, SD 0.07 at 3.14 rad.s-1, from 0.65 rad, SD 0.11 to 0.92 rad, SD 0.09 at 4.19 rad.s-1 and from 0.60 rad, SD 0.11 to 0.88 rad, SD 0.11 at 5.24 rad.s-1 (P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The aim of this study was to assess the effects in humans of early (2 weeks) and delayed (6 weeks) isokinetic strength training in the recovery of muscle strength following an arthroscopic partial meniscectomy. The peak torque developed in the quadriceps and hamstrings and the torque developed at a knee angle of 1.05 rad were evaluated in 16 subjects, pre-operatively (pre-op), and 2, 6, and 10 weeks post-operatively (post-op), on an isokinetic device at four different velocities (1.05, 2.09, 3.14, and 4.19 rad.s-1). The fatigue characteristics of the muscles were evaluated by having the subject perform 15 maximal contractions at 3.14 rad.s-1. Training was done on the same device (three times a week for 1-2 months), beginning either 2 or 6 weeks post-op. A repeated measures analysis of variance demonstrated a time effect but no differences between groups and no interactions. Torques developed by the knee flexors and extensors were significantly smaller 2 weeks post-op than pre-op, at all velocities tested. Torques developed in the quadriceps recovered to their pre-op values by 6 weeks, and further gained significantly in strength from 6 to 10 weeks. Quadriceps torques remained weaker than the contralateral side at 10 weeks. Hamstrings torques were either higher or similar to pre-op values by 6 weeks, and demonstrated increases from 6 to 10 weeks post-op at 1.05 and 4.19 rad.s-1 only. Total work and average power developed by the quadriceps and hamstrings during the fatigue protocol changed with time in a similar manner to torque.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Incompatibility of endurance- and strength-training modes of exercise   总被引:2,自引:0,他引:2  
Twenty-two male and female subjects trained for 7 wk for endurance (group E), for strength (group IS), or for both strength and endurance (group C) to evaluate the effect of concurrent performance of both modes of training on the in vivo force-velocity relationship of human muscle and on aerobic power. Endurance training consisted of five 5-min sessions three times a week on cycle ergometer with a work load that approached the subject's peak cycle-ergometer O2 uptake (peak CE VO2). Strength training consisted of two 30-s sets of maximal knee extensions per day performed on an isokinetic dynamometer three times a week at a velocity of 4.19 rad X s-1. Group C performed the same training as groups IS and E, alternating days of strength and endurance training. Subjects (groups C and IS) were tested pre- and posttraining for maximal knee-extension torque at a specific joint angle (0.52 rad below horizontal) for seven specific angular velocities (0, 0.84, 1.68, 2.81, 3.35, 4.19, and 5.03 rad X s-1). Groups C and E were tested for peak CE VO2 pretraining, at 14-day intervals, and posttraining. Group IS showed significant increases in angle-specific maximal torque at velocities up to and including the training speed (4.19 rad X s-1). Group C showed increases (P less than 0.05) at velocities of 0, 0.84, and 1.68 rad X s-1 only. Peak CE VO2, when expressed in relative or absolute terms, increased (P less than 0.05) approximately 18% for both groups E and C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Isokinetic training of right and left quadriceps femoris was undertaken three times per week for 16 weeks. One group of subjects (n = 13) trained at an angular velocity of 4.19 rad.s-1 and a second group (n = 10) at 1.05 rad.s-1. A control group (n = 10) performed no training. Maximal voluntary contraction (MVC) of the quadriceps, and peak pedal velocity nu p,peak) and peak power output (Wpeak) during all-out cycling (against loads equivalent to 9, 10, 11, 12, 13 and 14% MVC) were assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of the performance variables (P > 0.05). No significant difference in MVC was observed for any group after the 16-week period (P = 0.167). The post-training increases in average Wpeak (7%) and nu p,peak (6%) during the cycle tests were each significantly different from the control group response (P = 0.018 and P = 0.008, respectively). It is concluded that 16 weeks of isokinetic strength training of the knee extensors is able to significantly improve nu p, peak and Wpeak during spring cycling, an activity which demands considerable involvement of the trained muscle group but with its own distinct pattern of coordination.  相似文献   

7.
Day-to-day variability and single-measurement reliability of selected isokinetic knee extension-flexion strength and endurance indices were assessed in 10 adult men and 8 adult women. On three occasions separated by at least 5 days, the subjects completed 4 reciprocal maximal voluntary contractions (MVC) at different angular velocities (1.05 rad.s-1 and 3.14 rad.s-1). The men also completed a muscular endurance test consisting of 30 reciprocal, MVC at 3.14 rad.s-1. Coefficient of variation, intra-class correlation coefficient and standard error of single-measurement scores support the continued use of gravity corrected peak torque (PT) and average peak torque (APT) as indices of isokinetic leg strength. Similarly, gravity corrected APT and total work should be the recommended indices of isokinetic leg muscular endurance in men. The results suggest that these isokinetic indices must be assessed using multiple day-to-day trial protocols adequately to describe performance capacity. Composite indices such as the ratio of Knee flexion to extension PT and fatigue measurements offer considerably reduced reliability and a greater potential for misinterpretation. The reliability of knee extension indices generally exceeds that of flexion indices. Similar variability and reproducibility of responses were observed between men and women and between reciprocal contractions performed at angular velocities of 1.05 rad.s-1 and 3.14 rad.s-1.  相似文献   

8.
Knowledge of the strength, endurance and coordination of the shoulder muscles during dynamic contractions in healthy women would contribute to the understanding of symptoms in that part of the body in patients with myalgia. Twenty clinically healthy women performed single maximal forward shoulder flexions at four different angular velocities (0.57-3.14 rad.s-1). The same subjects also took part in two endurance tests (at angular velocities of 0.57 and 2.09 rad.s-1, respectively) consisting of 150 repeated maximal shoulder flexions. Electromyographic activity (EMG) was registered from four shoulder flexors using surface electrodes. Work was used as the mechanical variable. During the endurance tests subjects rated their perception of fatigue in the shoulder muscles. Work and the amplitude of the EMG signals decreaesd with angular velocity. The mean power frequency of the EMG was constant in the span of angular velocities investigated. During the endurance tests, work and the mean power frequency decreased during the initial 40-60 contractions followed by stable levels. The relative work level was higher at 2.09 than at 0.57 rad.s-1. Greater relative increases of the signal amplitudes of EMG occurred at 2.09 than at 0.57 rad.s-1. The EMG activity between the flexions (during the supposed passive extension) was higher at 2.09 than at 0.57 rad.s-1. Such a high activity was associated with a low mechanical performance at 2.09 rad.s-1. It is suggested that the initial sharp decreases in work and in mean power frequency reflect the fatiguing of the fast twitch motor units. Dynamic work consisting of continuous activity could predispose to muscle complaints.  相似文献   

9.
Maximal isokinetic knee extensor strength was measured as torque in 17 young (mean age +/- SD, 21 +/- 3 years) and 16 elderly (68 +/- 5 years) women at 30 degrees (0.52 rad) before full extension, at angular velocities from 0 to 5.24 rad s-1, in 7 increments of 0.87 rad s-1. The elderly women were significantly weaker than the young women at all angular velocities. The rate of loss of absolute torque with increasing velocity was similar for both age groups, but when torque was standardised as a percentage of the individual's maximum, the elderly group showed a significantly greater rate of loss than the younger group. Quick-release from an isometric effort did not increase the recorded torques at 4.36 rad s-1 compared with the free-running method in either age group. The age differences are compatible with lower ratio of type II to type I fibre are in the older group.  相似文献   

10.
Isokinetic strength of ankle plantarflexion (APF), knee extension (KE) and elbow extension (EE) was measured in male weight-trainers (6 power-lifters and 7 bodybuilders) and 25 untrained men of similar age and height. The weight-trainers exceeded control subjects by 21%, 25% and 73% in APF, KE and EE strength respectively. A similar pattern was obtained for limb girth, in which the weight-trainers exceeded control subjects by 6%, 13%, and 31% in calf, thigh and arm girth, respectively. Strength was similarly enhanced in the weight-trainers at the lower and higher velocities (APF 0.10, 0.63 rad X s-1, KE and EE 0.52, 3.14 rad X s-1) tested, and accounted for the positive correlation (r = 0.84) observed between low and high velocity strength. The powerlifters differed significantly from the bodybuilders only in their greater low velocity APF strength. The relatively greater enhancement of upper versus lower limb strength and muscle mass in the weight-trainers was considered in respect to training habits, trainability of different muscle groups and the state of training of muscle groups in untrained men.  相似文献   

11.
Technical limitations of some isokinetic dynamometers have called into question the validity of some data on human muscle mechanics. The Biodex dynamometer has been shown to minimize the impact artefact while permitting automatic gravity correction. This dynamometer was used to study quadriceps muscle torque and power generation in elite power (n = 6) and elite endurance (n = 7) athletes over 12 randomly assigned isokinetic velocities from 30 degrees.s-1 to 300 degrees.s-1. The angle at peak torque varied as a negative, linear function of angular velocity, with the average angle across test velocities being 59.5 degrees (SD 10.2 degrees). Power athletes developed greater peak torque at each angular velocity (P less than 0.05) and experienced a 39.7% decrement in torque over the velocity range tested. Endurance athletes encountered a 38.8% decline in peak torque. Torques measured at 60 degrees of knee flexion followed a similar trend in both groups; however the greatest torques were recorded at 60 degrees.s-1 rather than at 30 degrees.s-1. Leg extensor muscle power increased monotonically with angular velocity in both power (r2 = 0.728) and endurance athletes (r2 = 0.839); however these curves diverged significantly so that the power athletes produced progressively more power with each velocity increment. These inter group differences probably reflected a combination of natural selection and training adaptation.  相似文献   

12.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   

13.
The influence of elbow joint angle on elbow flexor isometric evoked twitch contractile properties was assessed in 15 young women (F), 18 young men (M) and 11 male bodybuilders (BB). Measurements were made at elbow joint angles of 1.31, 1.57, 1.83, 2.09, 2.36, 2.62 and 2.88 rad (3.14 rad =180° =full extension). The largest peak twitch torque values [mean (SE) N · m] in F [3.77 (0.20)], M [10.38 (0.68)] and BB [11.38 (1.05)] occurred at 2.88 rad. Peak torque was progressively smaller at smaller joint angles, but the decline from 2.88 to 1.31 rad was greater in M (68%) and BB (76%) than F (59%). Thus, the magnitude of intergroup differences in peak twitch torque (PT) was joint angle dependent. Twitch time to peak torque (TPT) was influenced in a complex way by joint angle in the three groups; BB had the lowest values at small joint angles but the highest values at the largest angles. Half-relaxation time (HRT) generally increased from the smallest to largest joint angles in a pattern that did not differ significantly among the three groups. Maximum rates of twitch torque development and relaxation showed the same pattern of results as PT; indicating that these time-related measures were more sensitive to joint angle effects on PT than on TPT or HRT. The results of this study indicate that careful consideration should be given to the selection of joint angles in the measurement of evoked twitch contractile properties for the purpose of making group comparisons or investigating the effects of interventions such as training.  相似文献   

14.
Eight elite male bodybuilders (MB), five elite female bodybuilders (FB), eight male control (MC), and eight female control recreational weight-trainers (FC) performed maximal elbow flexions on an isokinetic dynamometer at velocities between 1.02 and 5.24 rad.s-1, from which peak torque (PT) was measured. Elbow flexor cross-sectional area (CSA) was measured by computed tomographic scanning. Flexor CSA.lean body mass-1 ratios were greater in MB than in other subject groups. Correlations of PT were positively related to CSA but negatively to CSA.lean body mass-1 and to PT.CSA-1. PT.CSA-1 at low-velocity contractions were greater in MC and FC than in MB and FB groups, suggesting a training effect. The velocity-associated declines in torque between velocities of 1.02 and 5.24 rad.s-1 averaged 28.4 +/- 0.9% and were statistically identical in men and women among the subject groups, suggesting that neither gender nor training had affected this variable.  相似文献   

15.
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 +/- 5 yrs, height 1.63 +/- 0.06m and body mass 66.26 +/- 4.6kg: mean +/- SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14rad.s(-1) (through 90 degrees ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60 degrees of knee flexion. Rectal temperature was measured during 30min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P< 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05rad.s(-1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05rad.s(-1), extensors at 3.14rad.s(-1), and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

16.
The effect of three different training programmes on the maximal speed of an unloaded movement (a karate punch) was studied. Three movement variables were selected: maximal speed of the hand (Vh,max), maximal speed of the shoulder (Vs,max) and elbow extension speed (theta E) simultaneous with Vh.max. The programmes were: training group 1 (TG 1, n = 8) - karate students, dynamic heavy progressive resistance exercise (incline situp and incline bench press) + punch bag exercise; training group 2 (TG 2, n = 8)-karate students, punch bag training; training group 3 (TG 3, n = 5)-no karate experience, dynamic heavy progressive resistance exercise (as in TG 1). The movement variables were calculated from chrono-cyclo photographic recordings of the punches (100 Hz). The level of significance was set at 5%. Sixteen weeks of training gave the following results: significant increases in dynamic strength in all the training groups (14%-53%). In TG 1 the Vh.max increased significantly from 8.49 m.s-1, SD 1.19 to 9.35 m.s-1, SD 1.29 (10%); Vs.max increased significantly in TG 1 by 32% (2.18 m.s-1, SD 0.56 to 2.87 m.s-1, SD 0.98) and in TG 2 by 14% (2.40 m.s-1, SD 0.61 to 2.74 m.s-1, SD 0.52), and in TG 3 theta E at Vh,max increased significantly from 28.6 rad.s-1, SD 4.3 to 32.2 rad.s-1, SD 4.5 (13%). No significant relationships between the changes in maximal muscle strength and the changes in movement speed were found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
《Chronobiology international》2013,30(4-5):645-660
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 ± 5 yrs, height 1.63 ± 0.06 m and body mass 66.26 ± 4.6 kg: mean ± SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14 rad.s?1 (through 90° ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60° of knee flexion. Rectal temperature was measured during 30 min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P < 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05 rad.s?1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05 rad.s?1, extensors at 3.14 rad.s?1, and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

18.
Twenty-three subjects isokinetically trained the right and left quadriceps femoris, three times per week for 16 weeks; one group (n=13) trained at an angular velocity of 4.19 rad · s–1 and a second group (n=10), at 1.05 rad · s–1. A control group (n=10) performed no training. Isometric endurance time at 60% quadriceps maximum voluntary contraction (MVC), mean power output and work done (W) during all-out cycling, and the muscle buffer value (B) and carnosine concentration of biopsy samples from the vastus lateralis, were all assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of these variables (P < 0.05). No significant difference in either 60% MVC endurance time or impulse [(endurance time × force) at 60% MVC] was observed for any group after the 16 week period (P > 0.05). However, the post-training increase (9%) in W during high-intensity cycling was greater in the training group than in the control group (P=0.04). NeitherB nor carnosine concentration showed any significant change following training (P=0.56 andP=0.37, respectively). It is concluded that 16 weeks of isokinetic training of the knee extensors enables subjects to do more work during high-intensity cycling. Although the precise adaptations responsible for the improved performance have yet to be identified, they are unlikely to include an increase inB.  相似文献   

19.
The relationship between ciliary neurotrophic factor (CNTF) genotype and muscle strength was examined in 494 healthy men and women across the entire adult age span (20-90 yr). Concentric (Con) and eccentric (Ecc) peak torque were assessed using a Kin-Com isokinetic dynamometer for the knee extensors (KE) and knee flexors (KF) at slow (0.52 rad/s) and faster (3.14 rad/s) velocities. The results were covaried for age, gender, and body mass or fat-free mass (FFM). Individuals heterozygous for the CNTF null (A allele) mutation (G/A) exhibited significantly higher Con peak torque of the KE and KF at 3.14 rad/s than G/G homozygotes when age, gender, and body mass were covaried (P < 0.05). When the dominant leg FFM (estimated muscle mass) was used in place of body mass as a covariate, Con peak torque of the KE at 3.14 rad/s was also significantly greater in the G/A individuals (P < 0.05). In addition, muscle quality of the KE (peak torque at 3.14 rad x s(-1) x leg muscle mass(-1)) was significantly greater in the G/A heterozygotes (P < 0.05). Similar results were seen in a subanalysis of subjects 60 yr and older, as well as in Caucasian subjects. In contrast, A/A homozygotes demonstrated significantly lower Ecc peak torque at 0.52 rad/s for both KE and KF compared with G/G and G/A groups (P < 0.05). No significant relationships were observed at 0.52 rad/s between genotype and Con peak torque. These data indicate that individuals exhibiting the G/A genotype possess significantly greater muscular strength and muscle quality at relatively fast contraction speeds than do G/G individuals. Because of high positive correlations between fast-velocity peak torque and muscular power, these findings suggest that further investigations should address the relationship between CNTF genotype and muscular power.  相似文献   

20.
Eight young men were tested for strength, anaerobic capacity and aerobic endurance in a post absorptive state and after a 3.5 day fast. Strength was tested both isokinetically (elbow flexors, 0.52 rad x s-1 and 3.14 rad x s-1) and isometrically. Anaerobic capacity was evaluated by having subjects perform 50 rapidly repeated isokinetic contractions of the elbow flexors at 3.14 rad x s-1. Aerobic endurance was measured as time to volitional fatigue during a cycle ergometer exercise at 45% VO2max. Measures of VO2, VE, heart rate, and ratings of perceived exertion were obtained prior to and during the cycle exercise. The 3.5 day fast did not influence isometric strength, anaerobic capacity or aerobic endurance. Isokinetic strength was significantly reduced (approximately 10%) at both velocities. VO2, VE and perceived exertion were not affected by fasting. Fasting significantly increased heart rate during exercise but not at rest. It was concluded that there are minimal impairments in physical performance parameters measured here as a result of a 3.5 day fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号