首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contributions made by photosynthesis in the first leaf toseedling growth have been examined by a variety of methods includinginfra-red gas analysis and the use of 14CO2. The first leafis fully expanded by day 8 and maximal rates of photosynthesisare achieved about I day later. Up to day 8 growth of the seedlingsresults from the redistribution of seed reserves and once theseare exhausted growth is dependent upon the first leaf, beingreduced to very low levels if this is shaded. The second leafwhich begins to expand rapidly after day 10 is contributingto growth by day 14, and the contribution from the first leafbegins to decline after day 12. Apart from greatly reducing photosynthesis in treated leaves,shade also affects the development of photosynthetic capacity.When applied for 2 days or more from day 6, shade reduces thepeak level of carbon fixation achieved on days 9 and 10 by upto 35 per cent. It is shown that development of the first leafin terms of increased dry weight and photosynthetic capacity,is dependent on photosynthesis in the developing leaf itself.The mechanisms by which shading affects development are discussed.  相似文献   

2.
The effects of nitrate supply on the composition (cell numbers,protein and chlorophyll contents) of flag leaves of winter wheatgrown with two amounts of N fertilizer and of spring wheat grownin the glasshouse under controlled nitrate supply are describedand related to photosynthesis. Nitrogen deficiency decreasedthe size of leaves, mainly by reducing cell number and, to asmaller extent, by decreasing cell volume. Protein content perunit leaf area, per cell and per unit cell volume was largerwith abundant N. Total soluble protein, ribulose bisphosphatecarboxylase-oxygenase (RuBPc-o) protein and chlorophyll changedin proportion irrespective of nitrogen supply and leaf age.Photosynthesis per unit area of flag leaf and carboxylationefficiency in both winter and spring wheat were proportionalto the amount of total soluble protein up to 7.0 g m–2and to the amount of RuBPc-o protein up to 4.0 g m–2.However, photosynthesis did not increase in proportion to theamount of total soluble or RuBPc-o protein above these amounts.In young leaves with a high protein content the measured ratesof photosynthesis were lower than expected from the amount andactivity of RuBPc-o. Carboxylation per unit of RuBPc-o protein,measured in vitro, was slightly greater in N-deficient leavesof winter wheat but not of spring wheat. RuBPc-o activity perunit of RuBPc-o protein was similar in winter and spring wheatleaves and remained approximately constant with age, but increasedin leaves showing advanced senescence. RuBPc-o protein fromN-deficient leaves migrated faster on polyacrylamide gels thanprotein from leaves with high N content. Regulation of the rateof photosynthesis in leaves and chloroplasts with a high proteincontent is discussed. The conductance of the cell to the fluxof CO2 from intercellular spaces to RuBPc-o active sites iscalculated, from cell surface areas and CO2 fluxes, to decreasethe CO2 partial pressure at the active site by less than 0.8Pa at an internal CO2 partial pressure of 34 Pa. Thus the decreasein partial pressure of CO2 is insufficient to account for theinefficiency of RuBPc-o in vivo at high protein contents. Otherlimitations to the rate of photosynthesis are considered. Key words: Wheat, photosynthesis, nitrogen, ribulose, bisphosphate carboxylase  相似文献   

3.
Effects of Nitrogen Fertilizer on Growth and Yield of Spring Wheat   总被引:1,自引:0,他引:1  
Nine amounts of nitrogen fertilizer, ranging from 0 to 200 kgN ha–1, were applied to spring wheat cv. Kleiber in the3 years 1972-1974. In 1972 grain dry weight with 125 kg N ha–1or more was 100 g m–2 (23 per cent) greater than withoutnitrogen. Grain yield was unaffected by nitrogen in the otheryears. Leaf area at and after anthesis was increased throughoutthe range of nitrogen tested, most in 1972 and least in 1973.Consequently, the addition of 200 kg N ha–1 decreasedthe amount of grain produced per unit of leaf area by approximately25 per cent in all years. The dry weight of leaves and stems at anthesis and maturitywas increased by nitrogen in all years, similarly to leaf area.However, the change in stem dry weight between anthesis andmaturity was not affected by nitrogen; stems increased in dryweight for about 20 days after anthesis and then decreased tovalues similar to those at anthesis. The uptake of CO2 per unit area of flag leaf or second leaf(leaf below the flag leaf) was slightly decreased by nitrogenwhen the increase in leaf area caused by nitrogen appreciablydecreased the light intensity at the surface of these leaves.In spite of such decreases the CO2 absorbed by flag and secondleaves per unit area of land was always increased by nitrogen,and relatively more than was grain yield. It is suggested that increases in respiratory loss of CO2 withincreasing nitrogen fertilizer may explain why nitrogen increasedvegetative growth and leaf area relatively more than grain yield.  相似文献   

4.
Varietal Differences in Photosynthesis of Ears and Leaves of Barley   总被引:1,自引:0,他引:1  
TORNE  GILLIAN N. 《Annals of botany》1963,27(1):155-174
Rates of apparent photosynthesis of ears and of the combinedflag leaf and sheath and peduncle of Proctor barley grown inpots or in the field were similar to those of Plumage Archer,or slightly smaller when the dimensions of the ear and leafarea of Proctor were less than those of Plumage Archer. Thephotosynthesis rate of the ear—about 1.0 mg. CO2 per earper hour—was similar or slightly less than the rate ofthe flag leaf and sheath and peduncle. These rates of photosynthesisindicated that 40-50 per cent, of the carbohydrate in the grainwas provided by photosynthesis in the shoot and about 40 percent, by photosynthesis in the ear. The total CO2 fixed by theear was equivalent to about 60 per cent, of the grain weight,20 per cent, being lost by respiration. Shading the ear underestimatedthe total amount of CO2 fixed by the ear and decreased dry weightof grain per ear of both Proctor and Plumage Archer by 26 percent., as in pots. The contribution of ear photosynthesis toyield of grain per acre was greater for Proctor than for PlumageArcher because Proctor had more ears. The rate of apparent photosynthesis per dm.2 of leaves of Proctorwas similar to that of Plumage Archer both before and afterear emergence. Before ear emergence, the photosynthesis rateof a particular leaf decreased linearly with time and was slowerfor lower than for higher leaves on the shoot. Respiration ratesper g. dry weight of ears of Proctor and Plumage Archer weresimilar; in one experiment the leaves of Proctor respired slightlyfaster than those of Plumage Archer.  相似文献   

5.
Plants of the biennial Arctium tomentosum were grown from seedto seed-set in an open field under three different treatments:control plants receiving full light intensity, plants with aleaf area reduced by 45 per cent, and shaded plants receivingonly 20 per cent of natural illumination. At various stagesof development the youngest fully expanded leaf of one plantin each treatment was exposed to 14CO2 for half an hour. Subsequentdistribution of labelled assimilates in various plant partswas determined after eight hours. In the first year, the mostdominant sink was the tap root irrespective of variation inassimilate supply. During the production of new vegetative growthin the second season, a larger amount of radioactive photosynthatewas recovered from above ground parts, especially during formationof lateral branches. Seed filling consumed 80–90 per centof labelled carbon exported from the exposed leaf. In the secondyear, the most pronounced difference between treatments wasin the degree of apical dominance, being highest in shaded plantsand lowest in the plants with cut leaves. Results from 14C experimentsagreed fairly well with a ‘partitioning coefficient’derived from a growth analysis of plants grown independentlyunder the same experimental conditions. Reasons for discrepanciesbetween the 14C results and the partitioning coefficient arediscussed. Arctium tomentosum, burdock, variation in assimilate supply, assimilate distribution, 14CO2, labelling, growth analysis  相似文献   

6.
A well-developed infection of Yellow Rust on a leaf of springwheat (Jufy I) caused the assimilation of 14CO2 by that leafto decrease to 43.5 per cent of that of an uninfected leaf.Over a period of three hours translocation of 14C from an infectedleaf was only 0.87 per cent of that from a control leaf. Whencontrol plants were kept in the light for periods up to 16 hoursafter assimilating 14CO2 translocation continued at a steadyrate, whereas there was only negligible translocation from infectedleaves after the first few hours. The retention of labelledassimilates in the infected leaf could be partly, but not completely,accounted for by a conversion of assimilates to an alcohol-insolubleform. Rust infection had no effect on the distribution patternof 14C to other leaves from one which had assimilated 14CO2.In contrast to the marked retention of assimilate by an infectedleaf, such a leaf was unable to distort the normal distributionby attracting assimilates from the other leaves.  相似文献   

7.
Radioactive starch, glucose and fructose have been preparedfrom tobacco leaves after assimilation of C14O2. The apparatusused for photosynthesis consisted of a shallow Perspex leafchamber connected to a closed gas system, in which C14O2 wasgenerated from BaC14O2. Six leaves, area 14 to 18 sq. dm. whenexposed to bright sunlight with an initial CO2 concentrationof 8 to 10 per cent., assimilated 3.35 g. of C14O2 in 8 to 10hours. At least 80 per cent. of the C14O2 supplied appearedin the leaves as starch and sugar and over 80 per cent. of theradioactivity was accounted for in these carbohydrates. Thespecific activity per m. atom of carbon of the isolated productswas 85 to 90 per cent. of that of the C14O2. Small amounts ofradioactive carbon were also incorporated in the leaf proteinand in the celluose, hemicellulose and polyuronides.  相似文献   

8.
Increasing the concentration of CO2 in the air from the usual300 ppm to 1, 000 ppm in growth rooms with temperatures of 20°C during the 16-h light period and 15° C during the 8-hdark period increased the total dry weight of sugar-beet, barley,and kale by about 5o per cent. A further increase in CO, concentrationto 3, 300 ppm increased dry weight slightly more. These effectsoccurred with light intensities ranging from 3.7 to II.6 caldm–2 min–1 of visible radiation supplied by a mixtureof fluorescent and tungsten lamps, and were only slightly greaterwith the brighter light. Extra CO2 also increased leaf area,though relatively less than dry weight, and the number of barleyshoots but not of sugar-beet or kale leaves; it decreased leaf-arearatio, specific leaf area, and the ratio of tops to roots. Maizewas taller with extra CO2. Net assimilation rates in 1, 000 and 3, 300 ppm CO2 were about20 and 30 per cent respectively greater than in 300 ppm. Uptakeof CO2 in the light by complete tops and single leaves alsoincreased with increase in CO2 concentration. Photosynthesisof leaves of plants recently transferred to a new CO2 concentrationdepended only on that concentration and not on the originalone. Doubling the light intensity from 3.7 to 7.7 cal dm–2min–1 affected dry weight, leaf area, net assimilationrate, etc., similarly to a tenfold increase in CO2 concentration.  相似文献   

9.
Photosynthesis of Ears and Flag Leaves of Wheat and Barley   总被引:3,自引:0,他引:3  
Immediately after anthesis ears of spring wheat absorbed lessthan 0.5 mg CO2, per hour in daylight and later evolved CO2,in the light and in the dark. The rate of apparent photosynthesisof the combined flag-leaf lamina and sheath and peduncle (collectivelycalled flag leaf) of two spring wheat varieties, Atle and JufyI, was 3–4 mg per hour; the rates of the flag leaf andthe ear of two spring barleys, Plumage Archer and Proctor, wereeach about 1 mg per hour. The gas exchange of ears and flag leaves between ear emergenceand maturity accounted for most of the final grain dry weight.The CO2, fixed by the wheat ear was equivalent to between 17and 30 per cent of the grain weight, but more than this waslost by respiration, so assimilation in the flag leaf was equivalentto 110–20 per cent of the final grain weight. In barley,photosynthesis in the flag leaf and the net CO2 uptake by theear each provided about half of the carbohydrate in the grain. Barley ears photosynthesized more than wheat ears because oftheir greater surface, and flag leaves of wheat photosynthesizedmore than those of barley because they had more surface anda slightly greater rate of photosynthesis per dm2.  相似文献   

10.
The distribution of photosynthate labelled with 14C was studiedin spring wheat grown with different amounts of nitrogen fertilizerin the three years 1972–4, after exposing the flag leafor the leaf below the flag leaf to 14CO2 at 6–10 or 19–26days after anthesis. The movement of 14C to ears was unaffectedby nitrogen fertilizer except after early exposure in 1973,when nitrogen increased the retention of 14C in stems at maturity The concentration of sugar in the top part of the shoot at theend of the day was unaffected by nitrogen in 1973, but at 22days after anthesis in 1974 the concentration of sucrose inthe glumes and rachis, and in the flag leaf lamina was increasedby nitrogen. Loss of sugar by translocation and respirationduring the night may explain why this increase in concentrationwas not reflected in the 14C distribution 24 h after supplying14C. The proportion of the total 14C content of the shoot that wasin the ear at maturity ranged from 68 to 95 per cent dependingon when and to which leaf the 14CO2 was supplied. Less than5 per cent remained in the leaf exposed to 14CO2. The proportionof the final ear weight contributed by the leaf below the flagleaf was about half that contributed by the flag leaf. In 1974 about 24 per cent of the 14C absorbed by the flag leaf,and 56 per cent of that absorbed by the second leaf, was lostby maturity, presumably by respiration. Most loss occurred inthe first 24 h.  相似文献   

11.
STEER  B. T. 《Annals of botany》1971,35(5):1003-1015
In Capsicum frutescens L. cv. California Wonder the specificleaf weight (dry weight per unit laminar area) at leaf unfoldingis three times higher in the eighth leaf than in the first leafproduced. Intermediate leaves exhibit a trend between the twoThe change in specific leaf weight during laminar expansionis greatest in leaf 1 and least (sometimes zero) in leaf 8.Large changes in specific leaf weight during laminar expansionare associated with a large degree of palisade cell expansion,while leaves showing smaller rates of change have less palisadecell expansion but cell division is more evident. At leaf unfoldingthe fraction I protein content per unit laminar area is higherin upper than in lower leaves. Ribulose diphosphate carboxylaseactivity per unit laminar area and 14CO2 fixation per unit laminararea have a similar pattern of development in all leaves andshow no correlation with the changes in specific leaf weight.The peak of activity in all leaves occurs when the laminar areais 10 cm2. These results are compared with previous data onlaminar expansion and are seen as in accord with current ideason leaf growth.  相似文献   

12.
Respiratory Loss of Recently Assimilated Carbon in Wheat   总被引:2,自引:0,他引:2  
A series of experiments was undertaken to assess the amountof respiration associated with the growth of wheat at differentstages. Plants (or in some cases just the flag leaf) were labelledwith 14CO2 and the amount of 14CO2 respired during the subsequent48 or 72 h was measured. The evolution of 14C, expressed asa percentage of the amount initially assimilated (referred toas the R/A value) was used as a measure of the overall efficiencyof dry matter production. Respiratory 14CO2 evolution from labelledplants was most rapid in the first 12 h after labelling, thereafterdeclining rapidly. Evolution was also more rapid following labellingsat the end of the light period (dusk) than at the beginningof it (dawn). The R/A values were greatest (42 and 50 per centrespectively for dawn- and dusk-labelled plants) for young plantsand least (13 and 28 per cent respectively) for plants duringmid grain filling. When flag leaves, as distinct from wholeplants, were labelled, R/A values were lower still (9 and 21per cent respectively), indicating that flag leaf assimilatewas used efficiently in grain production. The calculated minimum R/A for the formation of grain material(10 per cent protein, 90 per cent starch) was 6.2 per cent.That the experimentally determined values were greater thanthis is attributed to the turnover of carbon in enzymes, toother maintenance processes, and possibly to the operation ofthe pentose phosphate pathway of glucose oxidation. R/A valueswere lower in those plants labelled at the beginning than thoseat the end of the photoperiod. This was considered to be a consequenceof refixation of respiratory 14CO2 during the light. The higherR/A values found for young plants were considered to be a consequenceof the greater percentage of 14C translocated to the roots (rootsbeing unable to refix respired CO2) and of greater turnoverof enzymes associated with more active metabolism. Triticum, wheat, respiration, carbon assimilation, carbon loss, grain-filling  相似文献   

13.
14CO2 was assimilated by single leaves (presentation leaves)of tobacco plants for periods of 2–3 hours. The plantswere then kept in air in continuous light and the redistributionof radioactivity determined at various times up to 96 hours.There was a complete turnover of sucrose in the presentationleaf in about 24 hours without change in amount. Starch turnedover more slowly and simultaneously increased in amount. 20–30per cent. of the radioactivity appeared to be irreversibly incorporatedinto the presentation leaf. Of the material exported from thepresentation leaf some 3 per cent. reached the upper leavesand stem apex. Import into leaves above the presentation leafwas completed in about 6 hours. No activity appeared in leavesbelow the presentation leaf, therefore the balance of the exportedactivity was retained in the stem and roots. The distribution of radioactivity in the leaves followed a well-definedpattern determined by the vascular interconnexions. Radioautographs of stem sections provided some information concerningdistribution of radioactivity in the stem.  相似文献   

14.
KHAN  A. A.; SAGAR  G. R. 《Annals of botany》1969,33(4):763-779
Two series of experiments were conducted with tomato plantsgrown in a glasshouse. In the first series the second leaf ofa young plant was exposed to 14CO2 for periods up to a maximumof 4 h and the distribution of the 14C-products was determinedeither at intervals of 10 and 30 min, 1, 2, 3, 4, 5, 6, 12,and 24 h, or 1, 2, 3, 5, 7, 11, and 15 days after the 14CO2was initially supplied. Seventeen per cent of the containedradioactive carbon was exported during the first day and a further23 per cent during the following week. At the death of the leaf44 per cent of the carbon originally fixed was present in thedead structure. There is evidence that the roots re-export alarge proportion of the carbon products originally imported. In the second series the tenth leaf of a plant was suppliedwith 14CO2, and 24 h later the relative amounts of radioactivitywere determined for every leaf, internode, and fruit truss andfor the roots and shoot apex. The plants were selected so thatleaf 10 was always immediately below truss 1. The experimentwas performed seven times, each time at a different stage bothin the life-cycle of the leaf and the development of the plant.There were differences in the total amounts of radioactivityfound at the end of each experiment but these differences werenot random. The pattern of distribution of the 14C exportedby leaf 10 changed as the plant developed. The percentage ofthe 14C initially fixed which was exported by leaf 10 rose toa peak early in its life and then fell sharply but the distributionof 14C exported followed a different pattern. For a long periodthere was a heavy accumulation of 14C in the internode immediatelybelow leaf 10 but later in development this was less evidentand the proportions reaching the roots increased. The internodeabove leaf 10 never showed the same degree of accumulation.Truss I dominated the distribution patterns during the phaseof its active growth. These results are discussed and a hypothesisto account for the changing patterns of distribution is presented.  相似文献   

15.
Dark fixation of CO2 by leaf disks or whole leaves taken fromplants of variety ‘Feuer Blute’ was measured using14CO2. Results indicate that dark fixation by leaf disks isindependent of photoperiodic induction of the plant, but isquantitatively related to the amount of light, over a fairlywide range, to which the leaf is exposed in the single precedinglight period.  相似文献   

16.
The uptake of 14CO2 by developing barley leaves of three ageswas followed using short presentation periods at the beginningor the end of the photoperiod. Partition of labelled carboninto ethanol-soluble and insoluble compounds, and movement oflabel within the plant were also examined. Young expanding leaves (day 6) retained most of the assimilatedcarbon and within 24 h 75–80 per cent of this was in ethanol-insolublecompounds. Leaves that were fully expanded took up rather more14CO2 but exported a substantial amount of this to roots, leafbases including the stem apex, and to the developing secondleaf. Export occurred over periods up to 24 h, and by that time8- and 10-day-old leaves retained only 35 per cent and 15 percent respectively of the total label taken up. The label retainedin these leaves was predominantly in ethanol-soluble forms,whereas 75 per cent or more of the labelled carbon which wasexported from the leaves was found in ethanol-insoluble compounds.  相似文献   

17.
HEUER  BRURIA; PLAUT  Z. 《Annals of botany》1981,48(3):261-268
The influence of salinity in the growing media on ribulose-1,5-bisphosphate (RuBP) carboxylase and on CO2 fixation by intactsugar beet (Beta vulgaris) leaves was investigated. RuBP carboxylase activity was mostly stimulated in young leavesafter exposure of plants for 1 week to 180 mM NaCl in the nutrientsolution. This stimulation was more effective at the higherNaHCO2 concentrations in the reaction medium. Salinity also enhanced CO2 fixation in intact leaves mostlyat rate-limiting light intensities. A 60 per cent stimulationin CO2 fixation rate was obtained by salinity under 450 µEm–2 s–1. At quantum flux densities of 150 µEm–2 s–1 (400–700 nm) this stimulation was280 per cent. Under high light intensities no stimulation bysalinity was found. In contrast, water stress achieved by directleaf desiccation or by polyethylene glycol inhibited enzymeactivity up to fourfold at –1.2 MPa. Beta vulgaris, sugar beet, ribulose-1, 5-bisphosphate carboxylase, salt stress, water stress, carbon dixoide fixation, salinity  相似文献   

18.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):875-882
A long-term, steady-state 13CO2 assimilation system at a constantCO2 concentration with a constant 13C abundance was designedand applied to quantitative investigations on the allocationof photoassimilated carbon in nodulated soya bean (Glycine maxL.) plants. The CO2 concentration in the assimilation chamberand its 13C abundance were maintained constant with relativevariances of less than ±0.5 per cent during an 8-h assimilationperiod. At the termination of 8-h 13CO2 assimilation by plantsat early flowering stage, the currently assimilated carbon relativeto total tissue carbon (measured by the degree of isotopic saturation)were for young leaves (including flower buds), 13.9 per cent;mature leaves, 15.7 per cent; stems+petioles, 5.9 per cent;roots, 5.4 per cent and nodules, 6.9 per cent, 48 h after theend of the 13CO2 assimilation period, they were 12.3, 7.5, 7.4,6.8 and 6.1 per cent, respectively. The treatment with a highconcentration of nitrate in the nutrient media significantlydecreased the allocation of 13C into nodules. Experiments on13CO2 assimilation by plants at the pod-filling stage were alsoconducted. Labelling by 13C was weaker than at the early floweringstage, but an intense accumulation of 13C into reproductiveorgans was observed. Glycine max L., nodulated soya bean plants, 13CO2 assimilation, carbon dynamics  相似文献   

19.
Carbon dioxide production in the dark by ears and by the restof the shoot of winter wheat grown in the field was measuredin 2 years during grain growth. The respiration rate per g d.wt of the ears was increased by nitrogen fertilizer. Ears ofthe semi-dwarf varieties Maris Fundin and Hobbit respired moreslowly than ears of Maris Huntsman and Cappelle-Desprez. Respirationrates of the rest of the shoot were unaffected by nitrogen orvariety. The amount of carbohydrate required to provide the CO2 respiredduring the whole period of grain growth varied from 163 to 443g m–2, or 42 to 76 per cent of the dry weight of the grain.More than half the CO2 lost was respired by the ear. The additionof 180 kg N ha–1, which increased grain yield by 78 percent in 1975, almost trebled the amount of CO2 lost by the ears.The semi-dwarf varieties lost less CO2 from ears and shootsthan did the taller ones, and had larger yields of grain. Respiration was also estimated from the difference between the14C contents of shoots sampled immediately after a 30 s exposureto 14CO2 and at maturity. When 14C was supplied 10 days afteranthesis, the loss by maturity amounted to 16–28 per centof that initially absorbed by flag leaves and 40 per cent ofthat absorbed by the leaf below the flag leaf. Most of the lossoccurred in the first day. The loss of 14C by maturity was significantlyincreased by nitrogen fertilizer in 1975. Triticum aestivum L., wheat, respiration, nitrogen supply, fertilizer treatment  相似文献   

20.
Experiments were carried out to investigate the physiologicalrelationship between an epiphyllous liverwort, Radula flaccidaLbg. et G., and its host leaves. The osmotic potential of theepiphylla cell sap (-30 to -35 bar) was found to be much lowerthan that of the host cells (-10 to -12 bar). There is thereforea good physiological basis for the movement of water from thehost leaves to the epiphylla. The amount of light incident onthe host leaf which is intercepted by even the heaviest epiphyllacolony investigated was less than 2 per cent and this was foundto produce no measurable difference between the chlorophyllcontents of epiphylla-colonized and uncolonized parts of thehost leaf. 14CO2 light fixation products were found not to movebetween the host leaf and the epiphylla in either direction.It is concluded that the dependence (parasitism) of R.flaccidaon its host leaves is partial and does not include the derivationof organic food substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号