首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
Variants of the mouse hepatoma cell clone inducible for aryl hydrocarbon (benzo(a)pyrene) hydroxylase (AHH) (EC 1. 14. 14.1) activity and deficient in hypoxanthine guanine phosphoribosyl-transferase (EC 2.4.2.8), and human primary lung carcinoma cell clone noninducible for AHH activity and deficient in thymidine kinase (EC 2.7.1.21) were isolated. The variant lines characterized for AHH inducibility and drug resistant phenotype were utilized to study somatic cell hybrids for the expression of AHH induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In two hybrids AHH activity was not expressed. In view of these results we conclude that aryl hydrocarbon hydroxylase activity is suppressed in AHH noninducible human lung carcinoma x AHH inducible mouse hepatoma cell hybrids.  相似文献   

3.
Molecular properties of nuclear aromatic hydrocarbon (Ah) receptor from Hepa-1c1c9 (Hepa-1) cells were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Nuclear Ah receptor was obtained by exposing intact cells to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 1 h at 37 degrees C in culture followed by extraction of receptor from nuclei with buffers containing 0.5 M KCl. The nuclear Ah receptor was compared to the cytosolic Ah receptor from the same cells. Under conditions of low ionic strength, the Ah receptor from Hepa-1 cytosol sedimented as a single 9.4 +/- 0.63 S binding peak that had a Stokes radius of 7.1 +/- 0.12 nm and an apparent relative molecular mass of 271,000 +/- 16,000. After prolonged (24 h) exposure to high ionic strength (0.5 M KCl), cytosol labeled with [3H]TCDD exhibited two specific binding peaks. The large form of cytosolic Ah receptor seen under high ionic strength conditions sedimented at 9.4 +/- 0.46 S, had a Stokes radius of 6.9 +/- 0.19 nm, and an apparent Mr 267,000 +/- 15,000. The smaller ligand-binding subunit generated by exposing cytosol to 0.5 M KCl sedimented at 4.9 +/- 0.62 S, had a Stokes radius of 5.0 +/- 0.14 nm, and an apparent Mr 104,000 +/- 12,000. Nuclear Ah receptor, analyzed under high ionic strength conditions, sedimented at 6.2 +/- 0.20 S, had a Stokes radius of 6.8 +/- 0.19 nm, and an apparent Mr 176,000 +/- 7000. Nuclear Ah receptor from rat H4IIE hepatoma cells was analyzed and found to have physicochemical characteristics identical to those of nuclear Ah receptor from the mouse Hepa-1 cells. The molecular mass of Hepa-1 nuclear Ah receptor was found to be statistically different from both the Mr approximately 267,000 cytosolic Ah receptor and the Mr approximately 104,000 subunit which were present in cytosol under high ionic strength conditions. Hepa-1 nuclear Ah receptor could not be converted to a smaller ligand-binding subunit by treatment with alkaline phosphatase, ribonuclease, or sulfhydryl-modifying reagents or prolonged exposure to 1.0 M KCl. Cytosolic Ah receptor from Hepa-1 cells was "transformed" by heating at 25 degrees C in vitro into a form with high affinity for DNA-cellulose. The transformed cytosolic Ah receptor, when analyzed under conditions of high ionic strength, sedimented at approximately 6 S, had a Stokes radius of approximately 6.7 nm, and an apparent Mr approximately 167,000.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical environmental contaminant with neurotoxic properties that alters neurodevelopment and behavior. TCDD is a ligand of the aryl hydrocarbon receptor (AhR), which is a key signaling molecule to fully understand the toxic and carcinogenic properties of dioxin. Much effort is underway to unravel the molecular mechanisms and the signaling pathways involved in TCDD-induced neurotoxicity, and to define its molecular targets in neurons. We have used cerebellar granule cells (CGC) from wild-type (AhR+/+) and AhR-null (AhR-/-) mice to characterize the cell death that takes place in neurons after TCDD toxicity. TCDD induced cell death in CGC cultures from wild-type mice with an EC(50) of 127±21 nM. On the contrary, when CGC neurons from AhR-null mice were treated with TCDD no significant cell death was observed. The role of AhR in TCDD-induced death was further assessed by using the antagonists resveratrol and α-naphtoflavone, which readily protected against TCDD toxicity in AhR+/+ CGC cultures. AhR+/+ CGC cultures treated with TCDD showed nuclear fragmentation, DNA laddering, and increased caspase 3 activity, similarly to what was found by the use of staurosporine, a well-established inducer of apoptosis. Finally, the AhR pathway was active in CGC because TCDD could induce the expression of the target gene cytochrome P450 1A2 in AhR+/+ CGC cultures. All together these results support the hypothesis that TCDD toxicity in CGC neurons involves the AhR and that it takes place mainly through an apoptotic process. AhR could be then considered a novel target in neurotoxicity and neurodegeneration whose down-modulation could block certain xenobiotic-related adverse effects in CNS.  相似文献   

6.
Patients receive chronic cysteamine in the management of nephropathic cystinosis. In a previous report our results indicated that acute cysteamine treatment inhibited cytochrome P-450. Cysteamine (85 mg/kg i.p.) was administered daily to female Swiss mice for 1.5 and 8.5 months. Cysteamine treatment (8.5 months) did not affect hepatic microsomal aryl hydrocarbon hydroxylase (AHH) activity compared with controls. A small decrease in liver AHH activity was seen after 1.5 months of treatment with cysteamine. Liver histology, body weight, liver and spleen weights, and serum aminotransferase activity after chronic and subchronic treatment did not differ from controls. Chronic in vivo cysteamine treatment, unlike acute in vitro treatment did not decrease AHH activity. Incubation of isolated murine hepatocytes with cysteamine significantly inhibited AHH activity compared with controls. The inhibition occurred in a concentration-related manner, with 65% inhibition at 8.8 mM (1 mg/mL) (equivalent to the predicted plasma concentration using the maximally tolerable human dose), and 100% inhibition at 44 mM (5 mg/mL). The concentrations used in vitro were not cytotoxic. This suggests that chronic cysteamine treatment may not result in drug interactions and that in vitro results are not always good indicators of in vivo effects.  相似文献   

7.
Aryl hydrocarbons such as dioxins, polychlorinated biphenyls and polyaromatic hydrocarbons bind to the cellular aryl hydrocarbon receptor (AhR) in the initial step of their metabolism. The activation of intracellular signaling subsequent to the AhR binding is highly correlated with the toxicity and carcinogenicity of these chemicals. We produced Saccharomyces cerevisiae coexpressing mouse AhR and aryl hydrocarbon receptor nuclear translocator (Arnt) protein in accordance with Miller III's method for constructing yeasts with human Ahr and Arnt [Toxicol. Appl. Pharmacol. 160 (1998) 297]. Ligand treatment induced a dose-dependent increase in beta-galactosidase activity from a reporter plasmid in the yeast. Then, we compared activities of several ligands in yeast having the mouse Ahr/Arnt genes with those in yeast having the human genes, both of which have the same genetic background. There was no significant difference in the EC50 values of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone between the mouse and human genes. However, indirubin, which was recently found in human urine as a potent AhR ligand [J. Biol. Chem. 276 (2001) 31475], had a 35-140 times higher EC50 value in the yeast with human genes than mouse genes. This difference might reflect species-specificity between mouse and human AhR/Arnt.  相似文献   

8.
9.
10.
X-irradiation (500 rads) was found to enhance the aryl hydrocarbon hydroxylase (AHH) activity of three cell lines. Radiation followed by induction with benz (a) anthracene (5–15 μg/ml) produced a synergistic effect on AHH. These effects were highly significant and were observed most dramatically with a hamster tumor cell line, A(Tl)Cl-3,a nd to a lesser extent in secondary hamsters embryo cells and mouse C3H/10T12 CL8 cells.  相似文献   

11.
The arylhydrocarbon receptor (AhR) plays a central role in mediating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity in animals. The investigations described here provide evidence that support a role for the AhR in TCDD-mediated pyruvate carboxylase (PC) level/activity reductions in mice. Pyruvate carboxylase plays a pivotal role in gluconeogenesis and in supplying carbon units for the citric acid cycle. Delivered ip in a corn oil carrier, TCDD suppresses PC activity/amount at doses as low as 1 μg/kg in responsive C57BL/6J(Ahb/b) mice. Corn oil alone injected ip into mice at 4 mL/kg appears to be an inducer that increases the amount and activity of PC. However, TCDD suppresses this induction. In the Ahb/b mouse, PC levels and activity are reduced to 10% of control values at a dose of 75 μg/kg. A time-course experiment shows that the PC reductions are apparent within 16 hours post-TCDD exposure. Here we report investigations on the PC/TCDD response using a congenic C57BL/6J(Ahd/d) mouse strain having an AhR with a low affinity for TCDD. If the PC/TCDD response is AhR mediated, the congenic mouse strain (Ahd/d) would require much higher doses of TCDD to suppress PC. In the Ahd/d mice, we observe that an approximately 60-fold increase in TCDD dose is necessary to produce a PC/TCDD effect. We also find that in Ahd/d mice, corn oil does not induce an increase in PC activity/amounts, as reported for Ahb/b mice.  相似文献   

12.
Incubation of H4-II-E-C3 rat hepatoma cells with either hydrocortisone or dexamethasone resulted in 3- to 5-fold increases in the levels of both phenylalanine hydroxylase and its essential cofactor, tetrahydrobiopterin. Maximum elevation of phenylalanine hydroxylase was noted after 24 h of incubation, whereas significant increases in tetrahydrobiopterin were found only after 48 h exposure of the cells to glucocorticoids. Removal of hormone from the culture medium resulted in rapid loss of cell tetrahydrobiopterin, but a much slower decline in the level of phenylalanine hydroxylase. Thus, although the levels of both phenylalanine hydroxylase and tetrahydrobiopterin in rat hepatoma cells are regulated by glucocorticoids, this regulation is apparently not strictly coordinated. Nevertheless, control of cellular tetrahydrobiopterin levels may be an important regulator of hepatic phenylalanine catabolism since significant increases in the ability of intact rat liver cells to hydroxylate phenylalanine were observed only after 48 h exposure to glucocorticoids, in correlation with increases in cell tetrahydrobiopterin content.  相似文献   

13.
Ah receptor in hepatic cytosols from adult cynomolgus monkeys (Macaca fasicularis) was identified and quantitated by its binding of the highly toxic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the carcinogens 3-methylcholanthrene, benzo[a]pyrene, and dibenz[a,h]anthracene. The concentration of Ah receptor in cynomolgus hepatic cytosols (approximately 10 fmol/mg cytosol protein) was about one-quarter of that typically detected in rodent hepatic cytosols. Receptor concentrations were equal in male and female cynomolgus. [3H]TCDD bound to cytosolic receptor with high affinity (Kd approximately 3 nM). In rodents, Ah receptor is known to play a central role in toxicity caused by halogenated aromatic compounds and in carcinogenesis caused by polycyclic aromatic hydrocarbons. Existence of Ah receptor in monkeys indicates that the receptor also may mediate such responses in primates.  相似文献   

14.
The aryl hydrocarbon receptor repressor (AHRR) is a negative regulator of AH receptor (AHR), which mediates most of the toxic and biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR has been shown to be the major reason for the exceptionally wide (ca. 1000-fold) sensitivity difference in acute toxicity of TCDD between two rat strains, sensitive Long-Evans (Turku/AB) (L-E) and resistant Han/Wistar (Kuopio) (H/W), but there is another, currently unknown contributing factor involved. In the present study, we examined AHRR structure and expression in these rat strains to find out whether AHRR could be this auxiliary factor. Molecular cloning of AHRR coding region showed that consistent with AHRR proteins in other species, the N-terminal end of rat AHRR is highly conserved, but PAS B and Q-rich domains are severely truncated or lacking. Identical structures were recorded in both strains. Next, the time-, dose-, and tissue-dependent expression of AHRR was determined using quantitative real-time RT-PCR. In liver, AHRR expression was very low in untreated rats, but it increased rapidly after TCDD exposure (100microg/kg). Testis exhibited the highest constitutive expression of AHRR, whereas kidney, spleen, and heart showed the highest induction of AHRR in response to TCDD treatment. Again, no marked differences were found between H/W and L-E rats, implying that AHRR is not the auxiliary contributing factor to the strain difference in TCDD sensitivity. However, simultaneous measurement of CYP1A1 mRNA reinforced the view that AHRR is an important determinant of tissue-specific responsiveness to TCDD.  相似文献   

15.
16.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, induced xanthine oxidase and xanthine dehydrogenase (XO/XDH) activities, in addition to ethoxyresorufin-O-dealkylase and methoxyresorufin-O-dealkylase activities in liver of mice. When TCDD was given to mice as a single oral dose of 40 microg/kg, the activities of XO and XDH increased about threefold within 3 days and the increased levels were maintained for 4 weeks. The treatment of mice with 3-methylcholanthrene also induced XO/XDH activities, but phenobarbital and dexamethasone had no effect. The level of aldehyde oxidase, a molybdenum flavoenzyme related to XO/XDH, in mouse liver was also enhanced about 1.5-fold by TCDD treatment. The inducing effect of TCDD and 3-methylcholanthrene was not observed in null mice (AhR(-/-)), which lack the AhR gene. XO and XDH activities were induced by TCDD in heterozygous mice (AhR(+/-)). The lipid peroxidation in liver was stimulated by TCDD. The induction of XO and XDH, which produces reactive oxygen species, may contribute to the various toxicities of TCDD.  相似文献   

17.
18.
Choline kinase catalyzes the first rate-limiting step in the pathway of biosynthesis of phosphatidylcholine. This enzyme was shown previously to be induced in liver by treatment of rats with polycyclic aromatic hydrocarbons (Ishidate et al. (1980) Biochem. Biophys. Res. Commun. 96, 946-952). The present study was undertaken to determine whether choline kinase in the murine hepatoma cell line, Hepa 1c1c7, is inducible by aromatic hydrocarbons and, if so, whether this induction is mediated by the aromatic hydrocarbon receptor. Treatment of Hepa 1c1c7 cells with 10 microM beta-naphthoflavone resulted in a 1.6-fold increase of choline kinase activity, but no response was seen when the cells were exposed to either 5.0 microM benzo[a]pyrene or 1.0 nM 2.3,7,8-tetrachlorodibenzo-p-doxin, both potent inducers of aryl hydrocarbon hydroxylase. Cell line variants with either deficient or elevated aromatic hydrocarbon receptors showed no increase in choline kinase activity following treatment with any of the polycyclic aromatic hydrocarbons. These results are not consistent with a role for the aromatic hydrocarbon receptor in increased choline kinase activity in Hepa 1c1c7 cells.  相似文献   

19.
The molecular properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7 were investigated. The receptor was found to represent a highly asymmetrical molecule with a sedimentation coefficient, s20,w, of approximately 8 S, a Stokes radius of 7-8 nm, and a calculated Mr approximately equal to 260,000-300,000. In comparison, the Hepa 1c1c7 glucocorticoid receptor in analogy to the glucocorticoid receptor in general as well as the C57BL/6 mouse and rat hepatic dioxin receptors are molecules with an s20,w value of 4-5 S, a Stokes radius of approximately 6 nm, and a calculated Mr approximately equal to 100,000. In the presence of 20 mM sodium molybdate, a large Mr approximately equal to 270,000-310,000 form of the Hepa 1c1c7 glucocorticoid receptor is stabilized which is hydrodynamically indistinguishable from the Mr approximately equal to 260,000-300,000 Hepa 1c1c7 dioxin receptor. Sodium molybdate does not have any effect on the molecular properties of the Hepa 1c1c7 dioxin receptor. In conclusion, the large form of dioxin receptor present in Hepa 1c1c7 mouse hepatoma cells in the absence of sodium molybdate is strikingly similar to molybdate-stabilized steroid hormone receptors as well as the molybdate-stabilized form of the dioxin receptor previously demonstrated in rat hepatic cytosol. Therefore, the Hepa 1c1c7 dioxin receptor might offer an interesting model for studies on the structure and function of Mr approximately equal to 300,000 forms of soluble receptors.  相似文献   

20.
In vivo treatment of chicks, quail and rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3-methylcholanthrene (MC) caused a dose-dependent increase in hepatic microsomal aryl hydrocarbon hydroxylase activity. A much lower level of AHH induction was observed following similar treatment of trout with high concentrations of TCDD or MC. No induction was apparent in midgut tissues from southern armyworm larvae exposed to the same inducers. A low level of receptor exhibiting specific binding of [3H]TCDD was demonstrated in chick hepatic cytosol, but no evidence of receptor was obtained with the other species. Although the specific binding of the receptor in chick cytosol was only 6-8 fmoles TCDD bound/mg protein compared to 135 fmoles/mg in rat hepatic cytosol, the chick receptor exhibited properties similar to those of Ah receptors in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号