首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

2.
Previous studies have shown that ligand or immunoaffinity chromatography can be used to purify the human platelet thromboxane A2 (TXA2) receptor-Galphaq complex. The same principle of co-elution was used to identify another G-protein associated with platelet TXA2 receptors. It was found that in addition to Galphaq, purification of TXA2 receptors by ligand (SQ31,491)-affinity chromatography resulted in the co-purification of a member of the G12 family. Using an antipeptide antibody specific for the human G13 alpha-subunit, this G-protein was identified as Galpha13. In separate experiments, it was found that the TXA2 receptor agonist U46619 stimulated [35S]guanosine 5'-O-(3-thiotriphosphate) incorporation into G13 alpha-subunit. Further evidence for functional coupling of G13 to TXA2 receptors was provided in studies where solubilized platelet membranes were subjected to immunoaffinity chromatography using an antibody raised against native TXA2 receptor protein. It was found that U46619 induced a significant decrease in Galphaq and Galpha13 association with the receptor protein. These results indicate that both Galphaq and Galpha13 are functionally coupled to TXA2 receptors and dissociate upon agonist activation. Furthermore, this agonist effect was specifically blocked by pretreatment with the TXA2 receptor antagonist, BM13.505. Taken collectively, these data provide direct evidence that endogenous Galpha13 is a TXA2 receptor-coupled G-protein, as: 1) its alpha-subunit can be co-purified with the receptor protein using both ligand and immunoaffinity chromatography, 2) TXA2 receptor activation stimulates GTPgammaS binding to Galpha13, and 3) Galpha13 affinity for the TXA2 receptor can be modulated by agonist-receptor activation.  相似文献   

3.
SQBAzide, a biotinylated, azido derivative of the TXA2 receptor antagonist, SQ31,491, was synthesized and characterized. The compound specifically inhibited human platelet aggregation mediated by TXA2 receptor activation and irreversibly labeled platelet TXA2 receptors upon exposure to ultraviolet light. This probe should prove to be of significant value for the study of the receptor-ligand binding domain.  相似文献   

4.
Among the various hematopoi;etic cells, platelets are critical for maintaining the integrity of the vascular system. They must be rapidly activated by sequential and coordinated mechanisms in order to efficiently prevent haemorrhage upon vascular injury. Several signal transduction pathways lead to platelet activation in vitro and in vivo, among them, several are initiated via receptors or co-receptors containing immuno-receptor tyrosine-based activation motifs (ITAM) which trigger downstream signalling like the immune receptors in lymphocytes. However, in contrast to immune cells for which the role of lipid rafts in signalling has largely been described, the involvement of laterally segregated membrane microdomains in platelet activation has been investigated only recently. The results obtained until now strongly suggest that early steps of platelet activation via the collagen receptor GpVI or via FcgammaRIIa occur preferentially in these microdomains where specific proteins efficiently organize key downstream signalling pathways. In addition, lipid rafts also contribute to platelet activation via heterotrimeric G-protein-coupled receptors. They are sites where the phosphoinositide (PI) metabolism is highly active, leading to a local generation of lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate. Here, evidence is accumulating that cholesterol-enriched membrane microdomains are part of a general process that contributes to the efficiency and the coordination of platelet activation mechanisms. Here we will discuss the biochemical and functional characterizations of human platelet rafts and their potential impact in platelet physiopathology.  相似文献   

5.
Among the various hematopo?̈etic cells, platelets are critical for maintaining the integrity of the vascular system. They must be rapidly activated by sequential and coordinated mechanisms in order to efficiently prevent haemorrhage upon vascular injury. Several signal transduction pathways lead to platelet activation in vitro and in vivo, among them, several are initiated via receptors or co-receptors containing immuno-receptor tyrosine-based activation motifs (ITAM) which trigger downstream signalling like the immune receptors in lymphocytes. However, in contrast to immune cells for which the role of lipid rafts in signalling has largely been described, the involvement of laterally segregated membrane microdomains in platelet activation has been investigated only recently. The results obtained until now strongly suggest that early steps of platelet activation via the collagen receptor GpVI or via FcγRIIa occur preferentially in these microdomains where specific proteins efficiently organize key downstream signalling pathways. In addition, lipid rafts also contribute to platelet activation via heterotrimeric G-protein-coupled receptors. They are sites where the phosphoinositide (PI) metabolism is highly active, leading to a local generation of lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate. Here, evidence is accumulating that cholesterol-enriched membrane microdomains are part of a general process that contributes to the efficiency and the coordination of platelet activation mechanisms. Here we will discuss the biochemical and functional characterizations of human platelet rafts and their potential impact in platelet physiopathology.  相似文献   

6.
Platelet secretion (exocytosis) is critical in amplifying platelet activation, in stabilizing thrombi, and in arteriosclerosis and vascular remodeling. The signaling mechanisms leading to secretion have not been well defined. We have shown previously that cGMP-dependent protein kinase (PKG) plays a stimulatory role in platelet activation via the glycoprotein Ib-IX pathway. Here we show that PKG also plays an important stimulatory role in mediating aggregation-dependent platelet secretion and secretion-dependent second wave platelet aggregation, particularly those induced via Gq-coupled agonist receptors, the thromboxane A2 (TXA2) receptor, and protease-activated receptors (PARs). PKG I knock-out mouse platelets and PKG inhibitor-treated human platelets showed diminished aggregation-dependent secretion and also showed a diminished secondary wave of platelet aggregation induced by a TXA2 analog and thrombin receptor-activating peptides that were rescued by the granule content ADP. Low dose collagen-induced platelet secretion and aggregation were also reduced by PKG inhibitors. Furthermore PKG I knockout and PKG inhibitors significantly attenuated activation of the Gi pathway that is mediated by secreted ADP. These data unveil a novel PKG-dependent platelet secretion pathway and a mechanism by which PKG promotes platelet activation.  相似文献   

7.
Thromboxane A(2) (TXA(2)) and 8-iso-PGF(2alpha) are two prostanoid agonists of the thromboxane A(2) receptor (TP), whose activation has been involved in platelet aggregation and atherosclerosis. Agents able to counteract the actions of these agonists are of great interest in the treatment and prevention of cardiovascular events. Here, we investigated in vitro and in vivo the pharmacological profile of BM-520, a new TP antagonist. In our experiments, this compound showed a great binding affinity for human washed platelets TP receptors, and prevented human platelet activation and aggregation induced by U-46619, arachidonic acid and 8-iso-PGF(2alpha). The TP receptor antagonist property of BM-520 was confirmed by its relaxing effect on rat aorta smooth muscle preparations precontracted with U-46619 and 8-iso-PGF(2alpha). Further, its TP antagonism was also demonstrated in vivo in guinea pig after a single intravenous injection (10 mg kg(-1)). We conclude that this novel TP antagonist could be a promising therapeutic tool in pathologies such as atherosclerosis where an increased production of TXA(2) and 8-iso-PGF(2alpha), as well as TP activation are well-established pathogenic events.  相似文献   

8.
Cerebral vascular smooth muscle cells express the CB(1) cannabinoid receptor, and CB(1) receptor agonists produce vasodilation of cerebral arteries. The purpose of this study was to determine whether vasoconstriction of rat middle cerebral artery (MCA) results in the local formation of endocannabinoids (eCBs), which, via activation of CB(1) receptors, oppose the vasoconstriction in a feedback manner. The thromboxane A(2) (TXA(2)) mimetic U-46619 significantly increased N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG) content of isolated MCA, whereas 5-hydroxytrypamine (5-HT) decreased AEA and 2-AG content. If eCBs play a feedback role in the regulation of MCA tone, then CB(1) receptor antagonists should enhance the constriction of MCA produced by U-46619 but not 5-HT. U-46619 caused concentration-dependent constrictions of endothelium-denuded MCA. Two CB(1) receptor antagonists SR-141716 and AM-251 decreased the EC(50) value for U-46619 to constrict endothelium-denuded MCA without affecting the maximal effect. A low concentration of CB(1) receptor agonist Win-55212-2 (30 nM) produced vasodilation of MCAs constricted with low but not saturating concentrations of U-46619. SR-141716 had no effect on the 5-HT concentration-contraction relationship. These data suggest that TXA(2) receptor activation increases MCA eCB content, which, via activation of CB(1) receptors, reduces the constriction produced by moderate concentrations of the TXA(2) agonist. Although 5-HT-induced vasoconstriction is reduced by exogenous CB(1) receptor agonist, activation of 5-HT receptors does not increase eCB content. These results suggest that MCA production of eCBs is not regulated by constriction per se but likely via a signaling pathway that is specific for TXA(2) receptors and not 5-HT receptors.  相似文献   

9.
We characterized thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors and histamine H1 receptors in Guinea-pig cultured tracheal smooth-muscle cells (TSMC). [3H]SQ 29,548 (a TXA2 antagonist)-binding sites were saturable and a high affinity with a dissociation constant of 6.2 +/- 0.60 nM (mean +/- S.E.) and a receptor density of 46 +/- 4.6 fmol/10(6) cells. [3H]SQ 29548 binding was completely inhibited by TXA2 mimetics or antagonists. Intracellular calcium concentration ([Ca2+]i) in TSMC was increased with U46619 stimulation and the increase was attenuated by TXA2 antagonists, the potencies of which correlated with those inhibiting the activities of the [3H]SQ 29548 binding. [3H]Mepyramine (a H1 antagonist)-binding sites were also present in TSMC. [3H]Mepyramine had a single class of low-affinity-binding sites with a dissociation constant of 2.6 +/- 0.081 microM and a receptor density of 10.6 +/- 0.11 nmol/mg protein. [3H]Mepyramine binding in TSMC membrane was inhibited by H1 antagonists, but not by H2 antagonists. The inhibition constants of mepyramine in TSMC were 910-times lower than those in tracheal membranes. In contrast, the histamine-induced increase in [Ca2+]i in TSMC was inhibited in the presence of low concentrations of H1 antagonists. All these observations provide evidence that TXA2/PGH2 receptors, mepyramine-binding sites and/or H1 receptors are expressed in cultured TSMC.  相似文献   

10.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

11.
To further characterize the human thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor, preparative isoelectric focusing (IEF) was performed on solubilized platelet membranes. TXA2/PGH2 receptors, assayed by specific binding of the TXA2/PGH2 antagonist [125I]PTA-OH, were electrofocused at pH 5.6. Scatchard analysis of IEF fraction pH 5.6 revealed a 180-fold concentration of TXA2/PGH2 receptors (Bmax = 3650 +/- 228 pM/mg focused, 19 +/- 4 pM/mg unfocused) with no change in binding affinity (Kd = 47 +/- 7 nM focused, 36 +/- 14 nM unfocused). SDS-polyacrylamide gel electrophoresis of photoaffinity-labelled electrofocused receptors revealed concentration of specifically labelled proteins having molecular masses of 49,000 and 27,000 Daltons. These results suggest that the human platelet TXA2/PGH2 receptor has a pI of 5.6, molecular mass of 49,000 Daltons, and may exist as a dimer. Preparative IEF should prove useful in the eventual purification of this receptor.  相似文献   

12.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

13.
The diazonium salt of 9,11-dimethylmethano-11,12-methano-16-(4-aminophenoxy)13,14- dihydro-13-aza-15 alpha beta-omega-tetranor TXA2 (PTA-POA) was synthesized and used as a photoaffinity ligand for the putative human platelet TXA2/PGH2 receptor. Incubation of human platelet membranes with the diazonium salt of PTA-POA followed by photolysis at 290 nm(hv) resulted in a 40% decrease in the specific binding of [125I]PTA-OH as measured in the radioligand binding assay. Co-incubation with a TXA2/PGH2 agonist followed by photolysis resulted in no decrease in specific binding. Incubation of the diazonium salt of PTA-POA with solubilized platelet membranes without photolysis followed by Scatchard analysis resulted in no change in the Kd for [125I]PTA-OH (38 nM) and the preparation which was incubated with the diazonium salt (42 nM). However, the Bmax for [125I]PTA-OH binding was reduced from 2.4 pmole/mg protein for control to 1.4 pmole/mg protein. These studies show that the diazonium salt of PTA-POA may be a useful photoaffinity ligand for human platelet TXA2/PGH2 receptors.  相似文献   

14.
The effects of the PAF receptor antagonists WEB 2086, WEB 2170, BN 50739 and BN 52021 on AA-induced platelet aggregation (PA) and TXA2 formation were investigated in comparison with the TXA2 synthetase inhibitor HOE 944 and the TXA2 receptor antagonist BM 13.177. All PAF antagonists tested were weak inhibitors of AA-induced PA and TXA2 formation (IC50 values between 80 and 2,737 mumol/l). HOE 944 was effective in concentrations 2-3 orders of magnitude lower than PAF antagonists in inhibiting TXA2 generation. These results imply that the inhibition of TXA2 formation is of minor relevance for the actions of the investigated PAF antagonists in AA-induced PA.  相似文献   

15.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

16.
Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A(2) (TXA(2)) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G(q), G(i) and G(z) (refs. 4-6). However, the role and relative importance of G(12) and G(13), which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha(13), but not Galpha(12), severely reduced the potency of thrombin, TXA(2) and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha(13) deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G(13)-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs.  相似文献   

17.
The synthesis and biological activity of novel 4-methyl-3,5-dioxane analogues are described. All compounds were produced through modification of the substituent formally corresponding to the omega-octenol side chain of thromboxane A2 (TXA2), in reference to the structure of SQ29548. Several compounds were found to be potent TXA2 receptor antagonists. Compound 8b was the most effective inhibitor of 9,11-epoxymethano PGH2 (U-46619)-induced human platelet aggregation (IC50 = 7.4 nM).  相似文献   

18.
The role of platelet and vascular arachidonate metabolism in ischemic heart disease can be derived from direct measurements and/or inhibitor trials. Direct measurements have yielded somewhat conflicting results, largely related to analytical problems and ex vivo platelet activation during blood sampling. On the other hand, inhibitor trials have clearly established the following: 1) thromboxane (TX) A2-dependent platelet activation plays an important role in the dynamic process of coronary thrombosis in unstable angina, 2) TXA2 does not appear to mediate coronary vasospasm, as seen in variant angina, 3) endogenous prostacyclin (PGI2) is not released in response to myocardial ischemia and is unlikely to regulate coronary blood flow, and 4) exogenous PGI2 is of limited therapeutic benefit. The demonstration that low-dose aspirin (0.5-1.0 mg/(kg X day] is a selective inhibitor of TXA2-dependent platelet function provides a conceptual and practical framework for the rational design of future trials. Moreover, the identification of major enzymatic metabolites of TXB2 in plasma (11-dehydro-TXB2) and urine (2,3-dinor-TXB2) and development of appropriate analytical techniques offer the opportunity for better defining the pathophysiological role of TXA2 in humans.  相似文献   

19.
Treatment of thrombotic diseases implicates the use of anti-platelet agents, anti-coagulants and pro-fibrinolytic substances. Amongst the anti-platelet drugs, aspirin occupies a unique position. As soon as it became evident that the major action of aspirin is indirect blockade, through inhibition of cyclooxygenase (COX), of the production of thromboxane A2 (TXA2), a powerful vasoconstrictor and platelet activator, research for new anti-thrombotics that interact more specifically with the production and/or the action of TXA2 was started. Terutroban (S 18886) is a selective antagonist of TP receptors, the receptors for TXA2, that are present on platelets and on vascular smooth muscle cells, but also on endothelial cells. The role played by the platelet and smooth muscle cell TP receptors in thrombotic disease is well known, and preclinical and clinical studies with terutroban have illustrated the powerful antithrombotic effects of this agent. The implication of endothelial TP receptors in the development of atherosclerotic disease has only been examined during the past five years and studies with terutroban have been crucial for understanding the role of these endothelial receptors in cardiovascular physiopathology. The goal of the present review is to discuss the arguments in favour of the hypothesis suggesting that activation of endothelial TP receptors, by causing expression of adhesion molecules, favours adhesion and infiltration of monocytes/macrophages in the arterial wall, thereby stimulating the development of atherosclerosis. The review will also highlight the important contribution of the studies performed with terutroban in this research area. The triple activity (anti-thrombotic, anti-vasoconstrictor, anti-atherosclerotic) observed with terutroban in preclinical studies, stressed by the first results in clinical development, places terutroban as an innovative drug with a unique potential for treatment of cardiovascular disorders.  相似文献   

20.
Thromboxane A2 (TXA2) is a potent lipid mediator released by platelets and inflammatory cells and is capable of inducing vasoconstriction and bronchoconstriction. In the airways, it has been postulated that TXA2 causes airway constriction by direct activation of thromboxane prostanoid (TP) receptors on airway smooth muscle cells. Here we demonstrate that although TXA2 can mediate a dramatic increase in airway smooth muscle constriction and lung resistance, this response is largely dependent on vagal innervation of the airways and is highly sensitive to muscarinic acetylcholine receptor (mAChR) antagonists. Further analyses employing pharmacological and genetic strategies demonstrate that TP-dependent changes in lung resistance and airway smooth muscle tension require expression of the M2 mAChR subtype. These results raise the possibility that some of the beneficial actions of anticholinergic agents used in the treatment of asthma and chronic obstructive pulmonary disease result from limiting physiological changes mediated through the TP receptor. Furthermore, these findings demonstrate a unique pathway for TP regulation of homeostatic mechanisms in the airway and suggest a paradigm for the role of TXA2 in other organ systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号