首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mathematical methods of experimental design were used to determine the optimal concentrations of nutrient medium components, aeration conditions, and pH providing for the maximum biomass yields, as well as fumarase and aspartase activities, during submerged cultivation ofErwinia sp. The data showed that different concentrations of carbon source (molasses) and pH of the nutrient medium were required to reach the maximum yields of fumarase and aspartase. Calculations suggested that the combination of these optimized factors would result in 3.2-, 3.4-, and 3.8-fold increases in theErwinia sp. biomass, aspartase activity, and fumarase activity yields, respectively. The experimental data were consistent with these estimates to 80% accuracy.  相似文献   

2.
The enzyme glucosyltransferase is an industrially important enzyme since it produces non-cariogenic isomaltulose (6-O-alpha-D-glucopyronosyl-1-6-D-fructofuranose) from sucrose by intramolecular transglucosylation. The experimental designs and response surface methodology (RSM) were applied for the optimisation of the nutrient concentrations in the culture medium for the production of glucosyltransferase by Erwinia sp. D12 in shaken flasks at 200 rpm and 30 degrees C. A statistical analysis of the results showed that, in the range studied, the factors had a significant effect (P < 0.05) on glucosyltransferase production and the highest enzyme activity (10.84 U/ml) was observed in culture medium containing sugar cane molasses (150 g l(-1)), corn steep liquor (20 g l(-1)), yeast extract Prodex Lac SD (15 g l(-1)) and K2HPO4 (0.5 g l(-1)) after 8 h at 30 degrees C. The production of cell biomass by the strain of Erwinia sp. D12 was carried out in a 6.6-l fermenter with a mixing rate of 200 rpm and an aeration rate of 1 vvm. Fermentation time, cellular growth, medium pH and glucosyltransferase production were observed. The greatest glucosyltransferase activity was 22.49 U/ml, obtained after 8 h of fermentation. The isomaltulose production from sucrose was performed using free Erwinia sp. D12 cells in a batch process using an orbital shaker. The influence of the parameters sucrose concentration, temperature, pH, and cell concentration on the conversion of sucrose into isomaltulose was studied. The free cells showed a high conversion rate of sucrose into isomaltulose using batch fermentation, obtaining an isomaltulose yield of 72.11% from sucrose solution 35% at 35 degrees C.  相似文献   

3.
When a wild-type strain of Escherichia coli B was cultured on a medium containing L-aspartic acid as the sole carbon source (Asp-C medium), aspartase formation was higher than that observed in minimal medium. Addition of glucose to Asp-C medium decreased aspartase formation. When also cultured in a medium containing L-aspartic acid as the sole nitrogen source (Asp-N medium), E. coli B showed a low level of aspartase formation and an elongated doubling time. To obtain aspartase-hyperproducing strains, we enriched cells growing faster than cells of the wild-type strain in Asp-N medium by continuous cultivation of mutagenized cells. After plate selection, the doubling times of these mutants were measured. Thereafter, fast-growing mutants were tested for aspartase formation. One of these mutants, strain EAPc7, had a higher level of aspartase formation than did the wild-type strain in medium containing L-aspartic acid as the carbon source, however; addition of glucose to this medium decreased aspartase formation. The other mutant, strain EAPc244, had a higher level of aspartase activity than did the wild-type strain in both media. Therefore, aspartase formation in mutant EAPc244 was released from catabolite repression. In strain EAPc244 the other catabolite-repressible enzymes, beta-galactosidase, tryptophanase, and the three tricarboxylic acid cycle enzymes, were also released from catabolite repression. Both mutants had sevenfold the aspartase formation of the wild-type strain in a medium which contained fumaric acid as the main carbon source and which has been used for industrial production of E. coli B aspartase. However, strain EAPc244 had 2.5-fold the fumarase activity of strain EAPc7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Aspartase-hyperproducing mutants of Escherichia coli B.   总被引:2,自引:1,他引:1       下载免费PDF全文
When a wild-type strain of Escherichia coli B was cultured on a medium containing L-aspartic acid as the sole carbon source (Asp-C medium), aspartase formation was higher than that observed in minimal medium. Addition of glucose to Asp-C medium decreased aspartase formation. When also cultured in a medium containing L-aspartic acid as the sole nitrogen source (Asp-N medium), E. coli B showed a low level of aspartase formation and an elongated doubling time. To obtain aspartase-hyperproducing strains, we enriched cells growing faster than cells of the wild-type strain in Asp-N medium by continuous cultivation of mutagenized cells. After plate selection, the doubling times of these mutants were measured. Thereafter, fast-growing mutants were tested for aspartase formation. One of these mutants, strain EAPc7, had a higher level of aspartase formation than did the wild-type strain in medium containing L-aspartic acid as the carbon source, however; addition of glucose to this medium decreased aspartase formation. The other mutant, strain EAPc244, had a higher level of aspartase activity than did the wild-type strain in both media. Therefore, aspartase formation in mutant EAPc244 was released from catabolite repression. In strain EAPc244 the other catabolite-repressible enzymes, beta-galactosidase, tryptophanase, and the three tricarboxylic acid cycle enzymes, were also released from catabolite repression. Both mutants had sevenfold the aspartase formation of the wild-type strain in a medium which contained fumaric acid as the main carbon source and which has been used for industrial production of E. coli B aspartase. However, strain EAPc244 had 2.5-fold the fumarase activity of strain EAPc7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The crystal structure of the thermostable aspartase from Bacillus sp. YM55-1 has been solved and refined for 2.5A resolution data with an R-factor of 22.1%. The present enzyme is a homotetramer with subunits composed of three domains. It exhibits no allosteric effects, in contrast to the Escherichia coli aspartase, which is activated by divalent metal cation and L-aspartate, but is four-times more active than the E.coli enzyme. The overall folding of the present enzyme subunit is similar to those of the E.coli aspartase and the E.coli fumarase C, both of which belong to the same superfamily as the present enzyme. A local structural comparison of these three enzymes revealed seven structurally different regions. Five of the regions were located around putative functional sites, suggesting the involvement of these regions into the functions characteristic of the enzymes. Of these regions, the region of Gln96-Gly100 is proposed as a part of the recognition site of the alpha-amino group in L-aspartate for aspartase and the hydroxyl group in L-malate for fumarase. The region of Gln315-Gly323 is a flexible loop with a well-conserved sequence that is suggested to be involved in the catalytic reaction. The region of Lys123-Lys128 corresponds to a part of the putative activator-binding site in the E.coli fumarase C. The region in the Bacillus aspartase, however, adopts a main-chain conformation that prevents the activator binding. The regions of Gly228-Glu241 and Val265-Asp272, which form a part of the active-site wall, are suggested to be involved in the allosteric activation of the E.coli aspartase by the binding of the metal ion and the activator. Moreover, an increase in the numbers of intersubunit hydrogen bonds and salt-bridges is observed in the Bacillus aspartase relative to those of the E.coli enzyme, implying a contribution to the thermostability of the present aspartase.  相似文献   

6.
Forty microbial strains isolated from raw milk samples and black and green olives were grown in MP5 (mineral pectin 5) medium containing 0.5% lemon pectin. All strains synthesized an extracellular polygalacturonase. Rhodotorula sp. ONRh9 (0.44 U x mL(-1)) and Leuconostoc sp. LLn1 (0.16 U x mL(-1)), which had a more active polygalacturonase in MP5 medium, were studied in MAPG5 medium containing polygalacturonic acid. Highest biomass and polygalacturonase production by these two strains were observed for polygalacturonic acid concentrations of 10 g x L(-1) (Rhodotorula sp. ONRh9) and 5 g x L(-1) (Leuconostoc sp. LLn1) and for initial pH values of 6 (Rhodotorula sp. ONRh9) and 5.5 (Leuconostoc sp. LLn1). The two strains grown in fermenters in MAPG5 medium generated the following results: with controlled initial pH, Rhodotorula sp. produced maximum biomass (DO) and polygalacturonase (PG) after 20 h (DO, 3.86; PG, 0.24 U x mL(-1)) of growth, and this level was sustained until the end of the culture; Leuconostoc sp. LLn1 synthesized more cells and polygalacturonase between 4 h (DO, 1.80; PG, 0.17 U x mL(-1)) and 24 h (DO, 3.90; PG, 0.27 U x mL(-1)) of culture. With uncontrolled initial pH, the cultures produced maximum biomass and polygalacturonase after 20 h (DO, 3.30; PG, 0.26 U x mL(-1)) for Rhodotorula sp. ONRh9 and 10 h (DO, 2.84; PG, 0.17 U x mL(-1)) for Leuconostoc sp. LLn1.  相似文献   

7.
A new technique of immobilization of microbial cells by entrapping in aubasidan, a microbial polysaccharide, was developed. This technique was applied to three cultures: Erwinia aroidea, Pseudomonas sp., and Alcaligenes faecalis, the producers of aspartase and L-aspartate beta-decarboxylase. The new method is effective. After immobilization, microbial cells retained 79-91% of their initial enzymatic activity.  相似文献   

8.
Summary The fermentation of grape must by Candida utilis ISS 28 was studied at different substrate concentrations, pH values, and nutrient supplementation in a shaken-flask fermenter, by using a composite design experiment.The experimental biomass yields were fitted to the only statistically significant factors with a mean standard error less than 8%, by using multiple regression analysis.Optimal conditions for maximum cell yield were established by plotting a series of loci at constant biomass yield and then verified experimentally, thus confirming the remarkable accuracy of the model  相似文献   

9.
Summary In our laboratory, EAPc-7 a strain having higher aspartase activity was derived from Escherichia coli ATCC 11303. For the improvement of l-aspartic acid productivity using EAPc-7 cells immobilized in -carrageenan, it was necessary to eliminate the fumarase activity which converts fumaric acid to l-malic acid. Several treatments for specifically eliminating fumarase activity from EAPc-7 cells were tested and it was found that when EAPc-7 cells were treated in a culture broth (pH 4.9) containing 50 mM l-aspartic acid at 45° C for 1 h, fumarase activity was almost completely eliminated without inactivation of the aspartase.The treated cells, immobilized in -carrageenan, were used for continuous production of l-aspartic acid from ammonium fumarate. The formation of l-malic acid was negligible and the half-life of the immobilized preparation was 126 days.Productivity of immobilized preparation of treated EAPc-7 cells in l-aspartic acid production was six times of that of the parent cell preparation.  相似文献   

10.
The optimum temperature for biomass yield and uricase production by uricolytic fungi, Aspergillus terreus, A. flavus and Trichoderma sp. was at 30 degrees C. The time required for maximum production of uricase and biomass yield was 4 days for two Aspergillus species and 6 days for Trichoderma sp. The optimum pH was at 6.4 for A. terreus and pH 6.6 for A. flavus and Trichoderma sp. The maximum fungal biomass yield was achieved in medium supplemented with 4% poultry waste. The best carbon sources for the production of uricase and mycelia yield were glycerol, sucrose and maltose by A. terreus, A. flavus and Trichoderma sp., respectively. Uric acid was found to be the best nitrogen source for production and activity of uricase by the three tested fungi. The addition of some vitamins to the culture media increased the maximum biomass yield of all the isolates, although no significantly increased uricase production was found.  相似文献   

11.
The optimum temperature for biomass yield and uricase production by uricolytic fungi, Aspergillus terreus. A. flavus and Trichoderma sp. was at 30 degrees C. The time required for maximum production of uricase and biomass yield was 4 days for two Aspergillus species and 6 days for Trichoderma sp. The optimum pH was at 6.4 for A. terreus and pH 6.6 for both A. flavus and Trichoderma sp. The maximum fungal biomass yield was achieved in medium supplemented with 4% poultry waste. The best carbon sources for the production of uricase and mycelia yield were glycerol, sucrose and maltose by A. terreus, A. flavus and Trichoderma sp., respectively. Uric acid was found to be the best nitrogen source for production and activity of uricase by the three tested fungi. The addition of some vitamins to the culture media increased the maximum biomass yield of all the isolates, but did not significantly increase uricase production.  相似文献   

12.
The effects of nitrate, ammonium, and urea as nitrogen sources on the heterotrophic growth of Chlorella protothecoides were investigated using flask cultures. No appreciable inhibitory effect on the algal growth was observed over a nitrogen concentration range of 0.85-1.7 g l(-)(1). In contrast, differences in specific growth rate and biomass production were found among the cultures with the various nitrogen compounds. The influence of different nitrogen sources at a concentration equivalent to 1.7 g l(-)(1) nitrogen on the heterotrophic production of biomass and lutein by C. protothecoides was investigated using the culture medium containing 40 g l(-)(1) glucose as the sole carbon and energy source in fermentors. The maximum biomass concentrations in the three cultures with nitrate, ammonium, and urea were 18.4, 18.9, and 19.6 g l(-)(1) dry cells, respectively. The maximum lutein yields in these cultures were between 68.42 and 83.81 mg l(-)(1). The highest yields of both biomass and lutein were achieved in the culture with urea. It was therefore concluded that urea was the best nitrogen source for the production of biomass and lutein. Based on the experimental results, a group of kinetic models describing cell growth, lutein production, and glucose and nitrogen consumption were proposed and a satisfactory fit was found between the experimental results and predicted values. Dynamic analysis of models demonstrated that enhancing initial nitrogen concentration in fermentor cultures, which correspondingly enhances cell growth and lutein formation, may shorten the fermentation cycle by 25-46%.  相似文献   

13.
The effect of L-lysine HCl concentrations, pH, temperature and cultivation conditions on the synthesis of intracellular lysine decarboxylase (LDC) by Vibrio sp. was studied. The highest LDC activity was observed in a 4-hour culture grown at 30 degrees on a nutrient medium, pH 5.15 containing 0.9% L-lysine HCl as an inducer. Under these conditions the LDC activity of the bacterium was 8.43 U/mg dry cells.  相似文献   

14.
A lactose utilizing yeast strain, Kluyveromyces marxianus DSMZ-7239 was used for ethanol formation from cheese-whey powder (CWP) solution in batch experiments. Effects of initial substrate (CWP) and yeast concentrations on the rate and extent of ethanol formation were investigated. The initial pH and oxidation-reduction potential (ORP) was kept at 5 and -250 mV, respectively. The rate and extent of ethanol formation increased with increasing CWP concentration up to 156 g l(-1) (75 g l(-1) sugar) and then decreased for larger CWP concentrations due to substrate inhibition at high sugar concentrations. The ethanol yield coefficient was also maximum (0.54 g EtOH/g sugar) and equal to the theoretical yield at CWP concentration of 156 g l(-1). The growth yield coefficient was found to be Y(x/s)=1.2+/-0.1g biomass g sugar(-1). The rate of sugar utilization and ethanol formation also increased linearly with increasing initial biomass concentrations. A kinetic model describing the rate of sugar utilization and substrate inhibition as function of the initial substrate and the biomass concentrations was developed. The kinetic constants were determined using the experimental data. Model predictions of sugar utilization rates were in good agreement with the experimental data. The results indicated that the initial sugar concentration should be below 75 g l(-1) (CWP<156 g l(-1)) and the initial biomass should be above 850 mg l(-1) to obtain high rates and yields of ethanol formation and to avoid substrate inhibition.  相似文献   

15.
The possibility of controlling endospore formation by changing cultivation conditions was for the first time shown in acidophilic chemolithotrophic bacteria Sulfobacillus thermosulfidooxidans type strain 1269 and the thermotolerant strain K1 formerly described as "S. thermosulfidooxidans subsp. thermotolerans". Suppression of sporulation occurred when these strains were cultured in Manning's liquid medium with yeast extract. This medium was optimized by gradually reducing the concentrations of ferrous iron salts (the source of energy), phosphorous, nitrogen, and yeast extract and simultaneously increasing the concentrations of calcium, magnesium, and manganese (the elements important for sporogenesis) to attain higher yields of endospores by strains 1269 and K1. As a result, a new medium A was proposed, in which the life cycle of the strains studied culminated in sporulation at a level of 45 and 60%, respectively, of the total cell number. In a series of additional tests, the growth temperature and medium pH were adjusted to obtain the maximum yield of endospores. The optimal ranges found were 40-50 degrees C and pH 1.8-2.2 for strain 1269 and 35-40 degrees C and pH 2.5-2.7 for strain K1. An even higher yield of endospores, amounting to 55 and 75% for strains 1269 and K1, respectively, was obtained when the above growth conditions were combined (growth on medium A at optimal temperatures and pH). Our results suggest a new approach to optimizing sporulation by acidophilic chemolithotrophs, which consists in limiting the energy and nutrient sources and using temperature and pH values within the tolerance bounds of these cultures but outside their growth of optimum ranges.  相似文献   

16.
Most strains of Bacillus subtilis, dervied from the 168 (Marburg) strain, grow slowly on aspartate as sole carbon source. We isolated a mutant (aspH) that grows rapidly on aspartate because it produces aspartase constitutively. Thus, aspartase is needed for rapid growth on aspartate, whereas aspartate-alpha-ketoglutarate aminotransferase is not needed, as was demonstrated by a mutant lacking that enzyme activity. By two--and three-factor crosses using PBSl transduction, the aspH mutation was located between the aroD and the lys markers of the genetic map. Although sodium ions do not affect growth on glucose or L-malate, they specifically stimulate growth on aspartate in both the parent and the aspH mutant strains. Enzyme activities of crude aspartase and fumarase and of purified aspartase do not increase in the presence of sodium. These results show that stimulation by sodium involves some reaction other than the enzymes catabolizing aspartate. The ease of purification from the aspH strain and the stability of aspartase suggest that the B. subtilis enzyme is particularly useful for aspartate determinations.  相似文献   

17.
C Reyns  J Léonis 《Biochimie》1975,57(2):131-138
The catalysis of the hydration of fumarate and deshydration of L - malate by chicken fumarase was measured spectrophotometrically over a range of substrate concentrations from 4 times 10(-3) M to 8 times 10(-5) M for fumarate and from 8 times 10(-2) M to 10(-3) M for L - malate. For the forward and reverse reactions, linear Lineweaver and Burk plots were obtained. The Michaelis constants and the maximum initial velocities for both substrates were determined and the Haldane relation was found to be obeyed. The effect of pH on activity was investigated over a pH range from 5.5 to 9.0 and the data indicate the presence, in the active site, of two ionizable groups, one in the acidic form and one in the basic form. The values of the ionization constants, determined for the enzyme - substrate complexes, agree closely with the ones obtained for the porcine enzyme. The mode of action of twenty-four structural analogs on the initial velocity of the dehydration of L-malate, by chicken fumarase was examined. From these studies, two regions positively charged appear necessary for the effective binding of the carboxylates of the substrates and competitive inhibitors to the active center. Moreover, the data suggest the presence of an additional group, in the catalytic site of chicken fumarase, that stabilizes the carbon-carbon double bond common to fumarate and its structural analogs. Finally, from the comparison of the kinetic properties of the chicken and pig fumarases, it may be concluded that the catalytic mechanism of the homologous enzymes are very similar, if not identical.  相似文献   

18.
Members of the aspartase/fumarase superfamily share a common tertiary and quaternary fold, as well as a similar active site architecture; the superfamily includes aspartase, fumarase, argininosuccinate lyase, adenylosuccinate lyase, δ-crystallin, and 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE). These enzymes all process succinyl-containing substrates, leading to the formation of fumarate as the common product (except for the CMLE-catalyzed reaction, which results in the formation of a lactone). In the past few years, X-ray crystallographic analysis of several superfamily members in complex with substrate, product, or substrate analogues has provided detailed insights into their substrate binding modes and catalytic mechanisms. This structural work, combined with earlier mechanistic studies, revealed that members of the aspartase/fumarase superfamily use a common catalytic strategy, which involves general base-catalyzed formation of a stabilized aci-carboxylate (or enediolate) intermediate and the participation of a highly flexible loop, containing the signature sequence GSSxxPxKxN (named the SS loop), in substrate binding and catalysis.  相似文献   

19.
Lactococcus lactis IL1403 was used as an experimental strain to develop a chemically defined medium for study of the physiology and metabolic pathways of lactococci. An experimental leave-one-out technique was employed to determine the necessity of each of the 57 chemical components used in medium development. A statistical experimental design approach including three fractional factorial designs and a central composite design was used to optimize the fermentation process with 21 variables composed of 19 nutritional factors grouped from the 57 components and two environmental factors (initial pH and temperature). For L. lactis IL1403, the maximum biomass concentrations obtained with the two optimal chemically defined media developed in this study (ZMB1 and ZMB2) were generally 3.5- to 4-fold higher than the maximum biomass concentrations obtained with the previously described best synthetic media (SA) and 50% to 68% higher than the maximum biomass concentrations obtained with M17, a complex medium commonly used for lactococci. The new chemically defined media support high-cell-density growth of numerous strains of L. lactis, Enterococcus faecalis, and Streptococcus thermophilus.  相似文献   

20.
Biological hydrogen production by the green alga Chlamydomonas reinhardtii under sulfur-deprived conditions has attracted great interest due to the fundamental and practical importance of the process. The photosynthetic hydrogen production rate is dependent on various factors such as strain type, nutrient composition, temperature, pH, and light intensity. In this study, physicochemical factors affecting biological hydrogen production by C. reinhardtii were evaluated with response surface methodology (RSM). First, the maximum specific growth rate of the alga associated with simultaneous changes of ammonium, phosphate, and sulfate concentrations in the culture medium were investigated. The optimum conditions were determined as NH(4+) 8.00 mM, PO(4)(3-) 1.11 mM, and SO(4)(2-) 0.79 mM in Tris-acetate-phosphate (TAP) medium. The maximum specific growth rate with the optimum nutrient concentrations was 0.0373 h(-1). Then, the hydrogen production rate of C. reinhardtii under sulfur-deprivation conditions was investigated by simultaneously changing two nutrient concentrations and pH in the medium. The maximum hydrogen production was 2.152 mL of H(2) for a 10-mL culture of alga with density of 6 x 10(6) cells mL(-1) for 96 h under conditions of NH(4)(+) 9.20 mM, PO(4)(3-) 2.09 mM, and pH 7.00. The obtained hydrogen production rate was approximately 1.55 times higher than that with the typical TAP medium under sulfur deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号