首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have undertaken an initial characterization of frameshift mutagenesis in bacteriophage T7 and have identified a subset of very low reversion frameshift mutations in the T7 ligase gene (gene 1.3). We used this information to construct bacteriophage T7 strains that contain one extra or one less base pair in gene 1.3 such that a frameshift event restores the reading frame of that gene. These events can be quantified and the frameshift mutation isolated within a localized region of the ligase gene. We have also identified a portion of the T7 ligase protein that will accept tracts of nonsense amino acids yet still give a ligase positive phenotype. This allows flexibility in the design of the target DNA sequence with which to study frameshift mutagenesis. These assays for frameshift mutagenesis performed in E. coli cells infected with the appropriate T7 strain, were used to measure the frequency of both plus and minus frameshifts in vivo.  相似文献   

2.
Parental to progeny molecular recombination with bacteriophage T7.   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

3.
4.
Deletion formation in bacteriophage T4   总被引:24,自引:0,他引:24  
We have manipulated the dispensable region of the rIIB gene of bacteriophage T4 in order to study the generation of deletions involving direct repeats. We show that recombination between different parental chromosomes is one source of the deletions we have studied. We have also investigated the effects of structure, base composition and distance on deletion formation. We demonstrate that the potential to form structure in single-stranded DNA has variable effects on the frequency of deletion formation and conclude that, in some cases, slipped mispairing during DNA synthesis can make a substantial contribution to deletion frequencies. The G + C richness of the direct repeats involved in deletion formation is an important parameter of the frequency of deletion formation. We have confirmed that increasing the distance between direct repeats decreases deletion frequency.  相似文献   

5.
A system capable of in vitro packaging of exogenous bacteriophage T7 DNA has been used to monitor the biological activity of DNA replicated in vitro. This system has been used to follow the effects of UV radiation on in vitro replication and recombination. During the in vitro replication process, a considerable exchange of genetic information occurs between T7 DNA molecules present in the reaction mixture. This in vitro recombination is reflected in the genotype of the T7 phage produced after in vitro encapsulation; depending on the genetic markers selected, recombinants can comprise nearly 20% of the total phage production. When UV-irradiated DNA is incubated in this system, the amount of in vitro synthesis is reduced and the total amount of viable phage produced after in vitro packaging is diminished. In vitro recombination rates are also lower when the participating DNA molecules have been exposed to UV. However, biochemical and genetic measurements confirmed that there is little or no transfer of pyrimidine dimers from irradiated DNA into undamaged molecules.  相似文献   

6.
7.
A double-strand break in a bacteriophage T7 genome significantly reduced the ability of that DNA to produce viable phage when the DNA was incubated in an in vitro DNA replication and packaging system. When a homologous piece of T7 DNA (either a restriction fragment or T7 DNA cloned into a plasmid) that was by itself unable to form a complete phage was included in the reaction, the break was repaired to the extent that many more viable phage were produced. Moreover, repair could be completed even when a gap of about 900 nucleotides was put in the genome by two nearby restriction cuts. The repair was accompanied by acquisition of a genetic marker that was present only on the restriction fragment or on the T7 DNA cloned into a plasmid. These data are interpreted in light of the double-strand gap repair mode of recombination.  相似文献   

8.
Marker rescue experiments with alkylated T7 bacteriophage carried out in the presence and in the absence of nalidixic acid suggest that the gradient in rescue is due to two alkylation-induced causes: a DNA injection defect and an interference with DNA synthesis.  相似文献   

9.
A new physical method was developed to assay genetic recombination of phage T7 in vivo. The assay utilized T7 mutants that carry unique restriction sites and was based on the detection of a new restriction fragment generated by recombination. Using this assay, we reexamined the genetic requirements for recombination of T7 DNA. Our results were in total agreement with previous findings in that recombination required the products of genes 3 (endonuclease), 4 (primase), 5 (DNA polymerase), and 6 (exonuclease). Recombination was found to be independent of DNA ligase and DNA packaging and maturation functions.  相似文献   

10.
Most of the intracellular T4 DNA made in the presence of 9-aminoacridine is of lower molecular weight than mature T4 DNA and does not get packaged into phage particles. Using a T4 DNA transformation assay, we have examined this intracellular T4 DNA for its content of 9-aminoacridine-induced revertants of certain rII gene frameshift mutations. The proportion of acridine-induced revertants in the intracellular DNA population is close to that found in the phage progency made in the presence of 9-aminoacridine. Thus, the generation of low molecular weight T4 DNA in the presence of 9-aminoacridine is not, in itself, also a mutagenic process.  相似文献   

11.
Electrophoresis of bacteriophage T7 and T7 capsids in agarose gels.   总被引:3,自引:7,他引:3       下载免费PDF全文
Agarose gel electrophoresis of the following was performed in 0.05 M sodium phosphate-0.001 M MgCl2 (pH 7.4): (i) bacteriophage T7; (ii) a T7 precursor capsid (capsid I), isolated from T7-infected Escherichia coli, which has a thicker and less angular envelope than bacteriophage T7; (iii) a second capsid (capsid II), isolated from T7-infected E. coli, which has a bacteriophage-like envelope; and (iv) capsids (capsid IV) produced by temperature shock of bacteriophage T7. Bacteriophage T7 and all of the above capsids migrated towards the anode. In a 0.9% agarose gel, capsid I had an electrophoretic mobility of 9.1 +/- 0.4 X 10(-5) cm2/V.s; bacteriophage T7 migrated 0.31 +/- 0.02 times as fast as capsid I. The mobilities of different preparations of capsid II varied in such gels: the fastest-migrating capsid II preparation was 0.51 +/- 0.03 times as fast as capsid I and the slowest was 0.37 +/- 0.02 times as fast as capsid I. Capsid IV with and without the phage tail migrated 0.29 +/- 0.02 and 0.42 +/- 0.02 times as fast as capsid I. The results of the extrapolation of bacteriophage and capsid mobilities to 0% agarose concentration indicated that the above differences in mobility are caused by differences in average surface charge density. To increase the accuracy of mobility comparisons and to increase the number of samples that could be simultaneously analyzed, multisample horizontal slab gels were used. Treatment with the ionic detergent sodium dodecyl sulfate converted capsid I to a capsid that migated in the capsid II region during electrophoresis through agarose gels. In the electron microscope, most of the envelopes of these latter capsids resembled the capsid II envelope, but some envelope regions were thicker than the capsid II envelope.  相似文献   

12.
Attempts to recover temperature-sensitive mutations affecting genes 13 and 14 (virion proteins) in bacteriophage T7 by analysis of amber revertants were confounded by the frequent occurrence of spontaneous temperature-sensitive mutations in other genes. These incidental temperature-sensitive mutations are physically distinct from but may be functionally related to genes 13 and 14, as shown by complementation and recombination studies. The possibility that these incidental temperature-sensitive mutations represent secondary-site suppressors of the pseudonormal suppressed amber products is discussed.  相似文献   

13.
Superinfection exclusion by bacteriophage T7.   总被引:2,自引:2,他引:0       下载免费PDF全文
Only two of the early genes of bacteriophage T7 were found to play a significant role in exclusion of superinfecting bacteriophage T3 particles; genes 0.3 and 1. Protein synthesis by the preinfecting phage particle was not required for efficient exclusion. These findings are discussed with regard to the known functions of these genes during T7 development.  相似文献   

14.
We investigated, by density gradients and subsequent electron microscopy, vegetative T4 DNA after single or multiple infection of Escherichia coli with wild-type T4. Our results can be summarized as follows. (i) After single infection (i.e., when early intermolecular recombination could not occur), most, if not all, T4 DNA molecules initiated the first round of replication with a single loop. (ii) After multiple infection, recombinational intermediates containing label from both parents first appeared as early as 1 min after the onset of replication, long before all parental DNA molecules had finished their first round and before secondary replication was detectable. (iii) At the same time, in multiple infections only, complex, highly branched concatemeric T4 DNA first appeared. (iv) Molecules in which two loops or several branches were arranged in tandem were only found after multiple infections. (v) Secondary loops within primary loops were seen after both single and multiple infections, but they were rare and many appeared off center. Thus, recombination in wild-type T4-infected cells occurred very early, and the generation of multiple tandem loops or branches in vegetative T4 DNA depended on recombination. These results are consistent with the previous finding (A. Luder and G. Mosig, Proc. Natl. Acad. Sci. U.S.A. 79:1101-1105, 1982) that most secondary growing points of T4 are not initiated from origin sequences but from recombinational intermediates. By these and previous results, the various DNA molecules that we observed are most readily explained as intermediates in DNA replication and recombination according to a model proposed earlier to explain various other aspects of T4 DNA metabolism (Mosig et al., p. 277-295, in D. Ray, ed., The Initiation of DNA Replication, Academic Press, Inc., New York, 1981).  相似文献   

15.
We have examined survival and mutagenesis of bacteriophage T7 after exposure to the alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). It was found that although both alkylating agents caused increased reversion of specific T7 mutations, EMS caused a higher frequency of reversion than did MMS. Exposure of the host cells to ultraviolet light so as to induce the SOS system resulted in increased survival (Weigle reactivation) of T7 phage damaged with either EMS or MMS. However, after SOS induction of the host we did not detect an accompanying increase in mutation frequency measured as either reversion of specific T7 mutants or by generation of mutations in the T7 gene that codes for phage ligase. Neither mutation frequency nor survival of alkylated phage was affected by the umuD,C mutation in the Escherichia coli host nor by the presence of plasmid pKM101. This may mean that the mode of Weigle reactivation that is detected in T7 is not mutagenic in nature.  相似文献   

16.
Drake, John W. (University of Illinois, Urbana). Ultraviolet mutagenesis in bacteriophage T4. II. Photoreversal of mutational lesions. J. Bacteriol. 92:144-147. 1966.-T4r mutations were induced by ultraviolet irradiation of extracellular phage particles, using a phage mutant, v, which is particularly susceptible to photoreactivation. Most of the induced r mutations could be subsequently photoreversed intracellularly with white light. Ultraviolet irradiation induces both transitions and sign mutations, and both were susceptible to photoreversal. The results suggest that two very different types of mutational lesions may arise from a common type of photochemical lesion.  相似文献   

17.
Density transfer and shearing experiments show that the bacteriophage T7 endonuclease (gene 3) is necessary for the dispersion of parental DNA in the newly replicated DNA. These experiments on parental to progeny recombination support previous genetic data (Powling & Knippers, 1974; Kerr & Sadowski, 1975) that the gene 3 protein is essential for T7 recombination. Concatemers containing the newly replicated DNA have been sheared to the size of mature phage DNA and also to quarter molecules. In the presence of gene 3 protein, parental DNA and newly replicated DNA are interspersed. In the absence of gene 3 protein, the parental strand of each sheared DNA molecule is usually found intact.  相似文献   

18.
We developed a simple, direct, physical assay to detect genetic recombination of bacteriophage T7 DNA in vitro. In this assay two mature T7 DNA molecules, each having a unique restriction enzyme site, are incubated in the presence of a cell-free extract from T7-infected Escherichia coli cells. After extraction of the DNA, restriction enzyme digestion, and agarose gel electrophoresis, genetic recombination is detected by the appearance of a novel recombinant DNA band. Recombination frequencies as high as 13% have been observed. We used this assay to determine the genetic requirements for in vitro recombination. In agreement with results obtained previously with a biological assay, T7 recombination in vitro appears to proceed via two distinct pathways.  相似文献   

19.
Frameshifting in gene 10 of bacteriophage T7.   总被引:7,自引:2,他引:5       下载免费PDF全文
  相似文献   

20.
After treatment with methyl or ethyl methane sulfonate, T7 amber mutants display a reduced capacity for recombination. Moreover, alkylation reduces recombination frequency involving markers on the right-hand side of the genetic map more than it reduces recombination frequency involving markers on the left-hand side. We interpret this to mean that alkylation can stop DNA injection at any point along the DNA molecule, and that T7 phage injects its DNA in a unique fashion starting from the end carrying the genes for early proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号