首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   

2.
Experimental evidence indicates that the membrane-associated proteins polycystin-1 and polycystin-2 operate as a receptor-calcium channel complex that regulates signaling pathways essential for modulation of renal tubulogenesis. Polycystic kidney disease is characterized by defective renal tubular structure and results from mutations in either PKD1 or PKD2 genes. Recent data suggest that polycystin-1 and polycystin-2 might localize to primary cilium in principal cells of renal collecting tubules and are thought to act as mechanosensors of fluid flow and contents. Ciliary bending by fluid flow or mechanical stimulation induce Ca(2+) release from intracellular stores, presumably to modulate ion influx in response to tubular fluid flow. Polycystins are also emerging as playing a significant role in sperm development and function. Drosophila polycystin-2 is associated with the head and tail of mature sperm. Targeted disruption of the PKD2 homolog results in nearly complete male sterility without disrupting spermatogenesis. Mutant sperm are motile but are unable to reach the female storage organs (seminal receptacles and spermathecae). The sea urchin polycystin-1-equivalent suPC2 colocalizes with the polycystin-1 homolog REJ3 to the plasma membrane over the acrosomal vesicle. This localization site suggests that the suPC2-REJ3 complex may function as a cation channel mediating acrosome reaction when sperm contact the jelly layer surrounding the egg at fertilization. Future studies leading to the identification of specific ligands for polycystins, including the signaling pathways, might define the puzzling relationship between renal tubular morphogenesis and sperm development and function.  相似文献   

3.
The sea urchin sperm acrosome reaction (AR) is a prerequisite for sperm-egg fusion. This report identifies sea urchin sperm receptor for egg jelly-3 (suREJ3) as a new member of the polycystin-1 family (the protein mutated in autosomal dominant polycystic kidney disease). suREJ3 is a multidomain, 2,681-amino acid, heavily glycosylated orphan receptor with 11 putative transmembrane segments (TMS) that localize to the plasma membrane covering the sperm acrosomal vesicle. Like the latrophilins and other members of the secretin family of G-protein-coupled receptors, suREJ3 is cleaved at the consensus GPS (G-protein-coupled receptor proteolytic site) domain. Antibodies to the extracellular 1,455-residue NH(2)-terminal portion identify a band at 250 kDa that shifts in electrophoretic mobility to 180 kDa upon glycosidase digestion. Antibodies to the 1,226-residue COOH-terminal portion identify a band at 150 kDa that shifts to 140 kDa after glycosidase treatment. Antibodies to both portions of suREJ3 localize exclusively to the plasma membrane over the acrosomal vesicle. Immunoprecipitation shows that both portions of suREJ3 are associated in detergent extracts. This is the first report showing that a polycystin family member is cleaved at the GPS domain. Localization of suREJ3 to the acrosomal region provides the first suggestion for the role of a polycystin-1 protein (components of nonselective cation channels) in a specific cellular process.  相似文献   

4.
A wealth of evidence shows that protein-carbohydrate recognition mediates the steps of gamete interaction during fertilization. Carbohydrate-recognition domains (CRDs) comprise a large family of ancient protein modules of approximately 120 amino acids, having the same protein fold, that bind terminal sugar residues on glycoproteins and polysaccharides. Sea urchin sperm express three suREJ (sea urchin receptor for egg jelly) proteins on their plasma membranes. suREJ1 has two CRDs, whereas suREJ2 and suREJ3 both have one CRD. suREJ1 binds the fucose sulfate polymer (FSP) of egg jelly to induce the sperm acrosome reaction. The structure of FSP is species specific. Therefore, the suREJ1 CRDs could encode molecular recognition between sperm and egg underlying the species-specific induction of the acrosome reaction. The functions of suREJ2 and suREJ3 have not been explored, but suREJ3 is exclusively localized on the plasma membrane over the sperm acrosomal vesicle and is physically associated with sea urchin polycystin-2, a known cation channel. An evolutionary analysis of these four CRDs was performed for six sea urchin species. Phylogenetic analysis shows that these CRDs were already differentiated in the common ancestor of these six sea urchins. The CRD phylogeny agrees with previous work on these species based on one nuclear gene and several mitochondrial genes. Maximum likelihood shows that positive selection acts on these four CRDs. Threading the suREJ CRDs onto the prototypic CRD crystal structure shows that many of the sites under positive selection are on extended loops, which are involved in saccharide binding. This is the first demonstration of positive selection in CRDs and is another example of positive selection acting on the evolution of gamete-recognition proteins.  相似文献   

5.
Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. Because NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca2+ from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn2+ quenching of luminal fura-2 and 45Ca2+ to directly demonstrate NAADP regulation of a cation channel on the acrosome. Additionally, we show that NAADP synthesis occurs through base exchange and is driven by an increase in Ca2+. We propose a new model for acrosome reaction signaling in which Ca2+ influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca2+ to drive acrosomal exocytosis.  相似文献   

6.
The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca2+ and Na+ influx and K+ and H+ efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba2+, and has a PK+/PNa+ selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization.  相似文献   

7.
Changes in the plasma membrane permeability of echinoderm sperm play a fundamental role in the acrosome reaction. During the reaction there is an increase in intracellular Ca2+ and Na+ and an efflux of H+ and K+. We have formed bilayers at the tip of patch pipets from a mixture of lipid vesicles and sea urchin sperm plasma membranes (12-50 microgram protein/ml). We observed three types of K+ channels (conductances: 22, 46, and 82 pS), two of which are partially blocked by TEA, and one Cl- channel (148 pS). The presence of K+ channels in sperm plasma membranes is consistent with the inhibition by TEA of the acrosome reaction in whole sperm and the membrane potential change that occurs during the reaction.  相似文献   

8.
9.
cAMP is important in sea urchin sperm signaling, yet the molecular nature of the adenylyl cyclases (ACs) involved remained unknown. These cells were recently shown to contain an ortholog of the mammalian soluble adenylyl cyclase (sAC). Here, we show that sAC is present in the sperm head and as in mammals is stimulated by bicarbonate. The acrosome reaction (AR), a process essential for fertilization, is influenced by the bicarbonate concentration in seawater. By using functional assays and immunofluorescence techniques we document that sea urchin sperm also express orthologs of multiple isoforms of transmembrane ACs (tmACs). Our findings employing selective inhibitors for each class of AC indicate that both sAC and tmACs participate in the sperm acrosome reaction.  相似文献   

10.
The egg jelly-induced acrosome reaction of sea urchin sperm is accompanied by intracellular alkalinization and Ca2+ entry. We have previously shown that in the absence of egg jelly, NH4Cl, which increases intracellular pH (pHi), induces Ca2+ uptake and the acrosome reaction in sperm of the sea urchin, Strongylocentrotus purpuratus. Here we show that at a constant concentration of NH4Cl (20 mM) in seawater, sperm react less as external pH is lowered from the normal 8 to 7.25. The pH dependence of the NH4Cl response is not very sensitive to temperatures between 12 and 17 degrees C. NH4Cl (15-50 mM) stimulates Ca2+ uptake and acrosome reactions in sperm suspended in Na+-free seawater, a condition known to inhibit the inductive effect of jelly. Jelly does not further stimulate Ca2+ uptake of sperm preincubated in NH4Cl, indicating that once the permeability to Ca2+ is increased by raising the pHi, the jelly has no further effect. We have used the membrane potential-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide to follow the membrane potential change that occurs when NH4Cl is added. Depolarization (25 mV) is associated with the acrosome reaction when either the natural inducer, egg jelly, or NH4Cl is added to sperm. Response to both inducers is inhibited under conditions known to abolish the acrosome reaction, i.e., low-pH seawater and nisoldipine. These results indicate that the NH4Cl-induced depolarization that accompanies the reaction is probably due to the opening of channels that allow Ca2+ to enter the cell and not to the depolarization by NH4+ ions. High-K+ seawater, which depolarizes sperm, and tetraethylammonium, a K+ channel blocker, inhibit the jelly-induced depolarization and the acrosome reaction, but do not inhibit NH4Cl-induced changes. It has already been shown that nigericin promotes Ca2+ entry and the acrosome reaction in sea urchin sperm. We found that the action of this ionophore depends on the pH of normal seawater. In the absence of external Na+ (replaced by choline), nigericin does not induce the reaction and does not stimulate Ca2+ uptake.  相似文献   

11.
The sea urchin egg has thousands of secretory vesicles known as cortical granules. Upon fertilization, these vesicles undergo a Ca2+-dependent exocytosis. G-protein-linked mechanisms may take place during the egg activation. In somatic cells from mammals, GTP-binding proteins of the Rho family regulate a number of cellular processes, including organization of the actin cytoskeleton. We report here that a crude membrane fraction from homogenates of Strongylocentrotus purpuratus sea urchin eggs, incubated with C3 (which ADP-ribosylates specifically Rho proteins) and [32P]NAD, displayed an [32P]ADP-ribosylated protein of 25 kDa that had the following characteristics: i) identical electrophoretic mobility in SDS-PAGE gels as the [32P]ADP-ribosylated Rho from sea urchin sperm; ii) identical mobility in isoelectro focusing gels as human RhoA; iii) positive cross-reactivity by immunoblotting with an antibody against mammalian RhoA. Thus, unfertilized S. purpuratus eggs contain a mammalian RhoA-like protein. Immunocytochemical analyses indicated that RhoA was localized preferentially to the cortical granules; this was confirmed by experiments of [32P]ADP-ribosylation with C3 in isolated cortical granules. Rho was secreted and retained in the fertilization membrane after insemination or activation with A23187. It was observed that the Rho protein present in the sea urchin sperm acrosome was also secreted during the exocytotic acrosome reaction. Thus, Rho could participate in those processes related to the cortical granules, i.e., in the Ca2+-regulated exocytosis or actin reorganization that accompany the egg activation.  相似文献   

12.
An essential initial step in fertilization in the sea urchin Strongylocentrotus purpuratus is an intracellular membrane fusion event in the sperm known as the acrosome reaction. This Ca2+-dependent, exocytotic process involves fusion of the membrane of the acrosomal vesicle and the plasma membrane. Recently, metalloendoproteases requiring divalent metals have been implicated in several Ca2+-dependent membrane fusion events in other biological systems. In view of the suggested involvement of Zn2+ in the sea urchin sperm acrosome reaction (Clapper, D.L., Davis, J.A., Lamothe, P.J., Patton, C., and Epel, D. (1985) J. Cell Biol. 100, 1817-1824) and the fact that Zn2+ is a metal cofactor for metalloendoproteases, we investigated the potential role of this protease in the acrosome reaction. A soluble metalloendoprotease was demonstrated and characterized in sperm homogenates using the fluorogenic protease substrate succinyl-alanine-alanine-phenylalanine-4-aminomethylcoumarin. The protease was inhibited by the metal chelators EDTA and 1,10-phenanthroline, and activity of the inactive apoenzyme could be reconstituted with Zn2+. The metalloendoprotease substrate and inhibitors blocked the acrosome reaction induced either by egg jelly coat or by ionophore, but had no effect on the influx of Ca2+. These observations suggest that inhibition occurs at a step independent of Ca2+ entry. Overall, the results of this study provide strong indirect evidence that the acrosome reaction requires the action of metalloendoprotease.  相似文献   

13.
We describe a new cytochemical method for ultrastructural localization of intracellular calcium stores. This method uses fluoride ions for in situ precipitation of intracellular calcium during fixation. Comparisons made using oxalate, antimonate, or fluoride showed that fluoride was clearly superior for intracellular calcium localization in eggs of the sea urchin Strongylocentrotus purpuratus. Whereas oxalate generally gave no intracellular precipitate and antimonate gave copious but random precipitate, three prominent calcium stores were detected using fluoride: the tubular endoplasmic reticulum, the cortical granules, and large, clear, acidic vesicles of unknown function. The mitochondria of these eggs generally showed no detectable calcium deposits. X-ray spectra confirmed the presence of calcium in the fluoride precipitates, although in some cases magnesium was also detected. Rat skeletal muscle and sea urchin sperm were used to test the reliability of the fluoride method for calcium localization. In rat skeletal muscle, most fluoride precipitate was confined to the sarcoplasmic reticulum. Using sea urchin sperm, which transport calcium into the mitochondria after exposure to egg jelly to induce the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria contain no detectable calcium-containing precipitate. Within 4 min after induction of the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria displayed many foci of calcium-containing precipitate. The use of fluoride for intracellular calcium localization therefore appears to be a substantial improvement over previous cytochemical methods.  相似文献   

14.
The low density, detergent-insoluble membrane fraction (LD-DIM), where gangliosides are likely to be highly enriched, was prepared from sperm of two sea urchin species, Hemicentrotus pulcherrimus and Strongylocentrotus purpuratus. Immunoblotting showed the presence in the LD-DIM of two receptors for egg ligands, a glycosylphosphatidylinositol (GPI)-anchored protein, and four proteins which may be involved in signal transduction. Co-immunoprecipitation revealed that at least three proteins, the speract receptor, the 63kDa GPI-anchored protein and the alpha subunit of a heterotrimeric Gs protein, are localized in the LD-DIM. This suggests that the LD-DIM fraction may be a membrane microdomain for speract-speract receptor interaction, as well as the subsequent signal transduction pathway involved in induction of sperm respiration, motility and possibly the acrosome reaction.  相似文献   

15.
High concentration of inositol 1,4,5-trisphosphate in sea urchin sperm   总被引:1,自引:0,他引:1  
We measured inositol 1,4,5-trisphosphate (InsP3) content of sea urchin gametes by using a specific protein binding assay, and found that a spermatozoon contains 4 x 10(-19) to 1 x 10(-18) moles of InsP3 before the acrosome reaction. Since the acrosome reaction has previously been shown to increase the InsP3 content of sperm severalfold, our measurement indicates that a spermatozoon contains at least 2 x 10(-18) moles of InsP3 at fertilization, corresponding to a concentration in the spermatozoon of about 1 mM. The threshold for activation of eggs by injection of InsP3 dissolved in a much larger volume of solution has been found to be about 3 x 10(-18) moles, corresponding to a concentration in the injectate of 1 microM. This suggests that sea urchin sperm may contain enough InsP3 to activate eggs. With an electroporation method, we also showed that sperm extract acts on eggs only from inside, consistent with a primary messenger role for InsP3.  相似文献   

16.
The trafficking of ion channels to the plasma membrane is tightly controlled to ensure the proper regulation of intracellular ion homeostasis and signal transduction. Mutations of polycystin-2, a member of the TRP family of cation channels, cause autosomal dominant polycystic kidney disease, a disorder characterized by renal cysts and progressive renal failure. Polycystin-2 functions as a calcium-permeable nonselective cation channel; however, it is disputed whether polycystin-2 resides and acts at the plasma membrane or endoplasmic reticulum (ER). We show that the subcellular localization and function of polycystin-2 are directed by phosphofurin acidic cluster sorting protein (PACS)-1 and PACS-2, two adaptor proteins that recognize an acidic cluster in the carboxy-terminal domain of polycystin-2. Binding to these adaptor proteins is regulated by the phosphorylation of polycystin-2 by the protein kinase casein kinase 2, required for the routing of polycystin-2 between ER, Golgi and plasma membrane compartments. Our paradigm that polycystin-2 is sorted to and active at both ER and plasma membrane reconciles the previously incongruent views of its localization and function. Furthermore, PACS proteins may represent a novel molecular mechanism for ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments.  相似文献   

17.
Polycystin-1 regulates a number of cellular processes through the formation of complexes with the polycystin-2 ion channel or with other signal transduction proteins. Polycystin-1 is expressed in many tissues but other members of this gene family are distributed in a more restricted fashion. PKDREJ expression has been detected only in the mammalian testis, where it is restricted to the spermatogenic lineage and retained in mature sperm. However, the functional characteristics of this protein and its role in sperm biology are not well understood. In this study it is shown that PKDREJ can modulate G protein signaling and associates with several members of the polycystin-2 family. These interactions, as well as polycystin-2 association with TRPC channels, are consistent with a role of this protein in the regulation of the acrosome reaction and in other aspects of sperm physiology.  相似文献   

18.
When sea urchin sperm is pretreated with sperm-binding protein prepared from the vitelline membrane of eggs of homologous species, it loses its fertilizing capacity entirely without losing its motility. It is not affected at all by sperm-binding protein from heterologous species. Neither agglutination nor acrosome reaction is evoked by the pretreatment. It is suggested that the sea urchin spermatozoon has on the apical part of its head a component which is complementary to the sperm-binding protein of the egg, and that the observed loss of the fertilizing capacity is caused by antedated interaction of this component with sperm-binding protein added before insemination.  相似文献   

19.
Anion Channel Blockers Inhibit the Acrosome Reaction of Echinoderm Sperm   总被引:1,自引:1,他引:0  
Two types of anion channel blockers, SITS (4-acetamide-4'-isothiocyanostilbene-2,2'-disulfonic acid) and DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid), inhibited jelly-induced acrosorne reaction in starfish and sea urchin. In starfish sperm, both of the blockers reversibly inhibited the formation of acrosomal process but they had no effect on either the acrosomal exocytosis or acid release from the sperm. Complete acrosome reaction occurred even in Cl- and SO42−-free artificial seawater whereas HCO3was required for the acrosomal exocytosis. Importance of anion transport in acrosome reaction is discussed.  相似文献   

20.
Identification and characterization of polycystin-2, the PKD2 gene product.   总被引:17,自引:0,他引:17  
PKD2, the second gene for the autosomal dominant polycystic kidney disease (ADPKD), encodes a protein, polycystin-2, with predicted structural similarity to cation channel subunits. However, the function of polycystin-2 remains unknown. We used polyclonal antisera specific for the intracellular NH(2) and COOH termini to identify polycystin-2 as an approximately 110-kDa integral membrane glycoprotein. Polycystin-2 from both native tissues and cells in culture is sensitive to Endo H suggesting the continued presence of high-mannose oligosaccharides typical of pre-middle Golgi proteins. Immunofluorescent cell staining of polycystin-2 shows a pattern consistent with localization in the endoplasmic reticulum. This finding is confirmed by co-localization with protein-disulfide isomerase as determined by double indirect immunofluorescence and co-distribution with calnexin in subcellular fractionation studies. Polycystin-2 translation products truncated at or after Gly(821) retain their exclusive endoplasmic reticulum localization while products truncated at or before Glu(787) additionally traffic to the plasma membrane. Truncation mutants that traffic to the plasma membrane acquire Endo H resistance and can be biotinylated on the cell surface in intact cells. The 34-amino acid region Glu(787)-Ser(820), containing two putative phosphorylation sites, is responsible for the exclusive endoplasmic reticulum localization of polycystin-2 and is the site of specific interaction with an as yet unidentified protein binding partner for polycystin-2. The localization of full-length polycystin-2 to intracellular membranes raises the possibility that the PKD2 gene product is a subunit of intracellular channel complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号