首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

2.
Trinucleotide repeats (TNRs) frequently expand in certain human genetic diseases, often with devastating pathological consequences. TNR expansions require the addition of new DNA; accordingly, molecular models suggest aberrant DNA replication or error-prone repair synthesis as the sources of most instability. Some proteins are currently known that either promote or inhibit TNR mutability. To identify additional proteins that help protect cells against TNR instability, yeast mutants were isolated with higher than normal rates of CAG.CTG tract expansions. Surprisingly, a rev1 mutant was isolated. In contrast to its canonical function in supporting mutagenesis, we found that Rev1 reduces rates of CAG.CTG repeat expansions and contractions, as judged by the behavior of the rev1 mutant. The rev1 mutator phenotype was specific for TNRs with hairpin forming capacity. Mutations in REV3 or REV7, encoding the subunits of DNA polymerase zeta (pol zeta), did not affect expansion rates in REV1 or rev1 strains. A rev1 point mutant lacking dCMP transferase activity was normal for TNR instability, whereas the rev1-1 allele that interferes with BRCT domain function was as defective as a rev1 null mutant. In summary, these results indicate that yeast Rev1 reduces mutability of CAG.CTG tracts in a manner dependent on BRCT domain function but independent of dCMP transferase activity and of pol zeta.  相似文献   

3.
4.
DNA polymerase zeta (pol zeta), which is required for DNA damage-induced mutagenesis, functions in the error-prone replication of a wide range of DNA lesions. During this process, pol zeta extends from nucleotides incorporated opposite template lesions by other polymerases. Unlike classical polymerases, pol zeta efficiently extends from primer-terminal base pairs containing mismatches or lesions, and it synthesizes DNA with moderate fidelity. Here we describe genetic and biochemical studies of three yeast pol zeta mutant proteins containing substitutions of highly conserved amino acid residues that contact the triphosphate moiety of the incoming nucleotide. The R1057A and K1086A proteins do not complement the rev3Delta mutation, and these proteins have significantly reduced polymerase activity relative to the wild-type protein. In contrast, the K1061A protein partially complements the rev3Delta mutation and has nearly normal polymerase activity. Interestingly, the K1061A protein has increased fidelity relative to wild-type pol zeta and is somewhat less efficient at extending from mismatched primer-terminal base pairs. These findings have important implications both for the evolutionary divergence of pol zeta from classical polymerases and for the mechanism by which this enzyme accommodates distortions in the DNA caused by mismatches and lesions.  相似文献   

5.
In yeast, mutations induced by UV radiation are dependent on the function of the Rev1 gene product, a Y-family DNA polymerase that assists in translesion replication with potentially mutagenic consequences. Human REV1 has been cloned, but its role in mutagenesis and carcinogenesis remains obscure. To examine the role of REV1 in UV mutagenesis in human cells and to evaluate its potential as a therapeutic target to prevent such mutations, we developed a ribozyme that cleaves human REV1 mRNA in vitro. Stable expression of the ribozyme in human cells reduced the target REV1 mRNA up to 90%. We examined the cytotoxic and mutagenic response to UV of seven independent clones that had reduced levels of endogenous REV1 mRNA. In each case, the clonogenic survival after UV was not different from that of the parental cell strains. In contrast, the UV-induced mutant frequencies at the endogenous HPRT locus were reduced up to 75% in cells with reduced levels of REV1 mRNA. The data support the idea that targeting the mutagenic translesion DNA replication pathway can greatly reduce the frequency of induced mutations.  相似文献   

6.
We have investigated the relative roles in vivo of Saccharomyces cerevisiae DNA polymerase eta, DNA polymerase zeta, Rev1 protein, and the DNA polymerase delta subunit, Pol32, in the bypass of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer, by transforming strains deleted for RAD30, REV3, REV1, or POL32 with duplex plasmids carrying one of these DNA lesions located within a 28-nucleotide single-stranded region. DNA polymerase eta was found to be involved only rarely in the bypass of the T-T (6-4) photoadduct or the abasic sites in the sequence context used, although, as expected, it was solely responsible for the bypass of the T-T dimer. We argue that DNA polymerase zeta, rather than DNA polymerase delta as previously suggested, is responsible for insertion in bypass events other than those in which polymerase eta performs this function. However, DNA polymerase delta is involved indirectly in mutagenesis, since the strain lacking its Pol32 subunit, known to be deficient in mutagenesis, shows as little bypass of the T-T (6-4) photoadduct or the abasic sites as those deficient in Pol zeta or Rev1. In contrast, bypass of the T-T dimer in the pol32delta strain occurs at the wild-type frequency.  相似文献   

7.
Human DNA polymerase eta, the product of the skin cancer susceptibility gene XPV, bypasses UV photoproducts in template DNA that block synthesis by other DNA polymerases. Pol eta lacks an intrinsic proofreading exonuclease and copies DNA with low fidelity, such that pol eta errors could contribute to mutagenesis unless they are corrected. Here we provide evidence that pol eta can compete with other human polymerases during replication of duplex DNA, and in so doing it lowers replication fidelity. However, we show that pol eta has low processivity and extends mismatched primer termini less efficiently than matched termini. These properties could provide an opportunity for extrinsic exonuclease(s) to proofread pol eta-induced replication errors. When we tested this hypothesis during replication in human cell extracts, pol eta-induced replication infidelity was found to be modulated by changing the dNTP concentration and to be enhanced by adding dGMP to a replication reaction. Both effects are classical hallmarks of exonucleolytic proofreading. Thus, pol eta is ideally suited for its role in reducing UV-induced mutagenesis and skin cancer risk, in that its relaxed base selectivity may facilitate efficient bypass of UV photoproducts, while subsequent proofreading by extrinsic exonuclease(s) may reduce its mutagenic potential.  相似文献   

8.
We have cloned the REV3 gene of Saccharomyces cerevisiae by complementation of the rev3 defect in UV-induced mutagenesis. The nucleotide sequence of this gene encodes a predicted protein of Mr 172,956 showing significant sequence similarity to Epstein-Barr virus DNA polymerase and to other members of a class of DNA polymerases including human DNA polymerase alpha and yeast DNA polymerase I. REV3 protein shows less sequence identity, and presumably a more distant evolutionary relationship, to the latter two enzymes than they do to each other. Haploids carrying a complete deletion of REV3 are viable. We suggest that induced mutagenesis in S. cerevisiae depends on a specialized DNA polymerase that is not required for other replicative processes. REV3 is located 2.8 centimorgans from CDC60, on chromosome XVI.  相似文献   

9.
DNA polymerase zeta (pol ζ) in higher eukaryotes   总被引:1,自引:0,他引:1  
Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol ζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Revl. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.  相似文献   

10.
J. P. McDonald  A. S. Levine    R. Woodgate 《Genetics》1997,147(4):1557-1568
Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RAD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5.  相似文献   

11.
Mutations arising in times of cell cycle arrest may provide a selective advantage for unicellular organisms adapting to environmental changes. For multicellular organisms, however, they may pose a serious threat, in that such mutations in somatic cells contribute to carcinogenesis and ageing. The budding yeast Saccharomyces cerevisiae presents a convenient model system for studying the incidence and the mechanisms of stationary-phase mutation in a eukaryotic organism. Having studied the emergence of frameshift mutants after several days of starvation-induced cell cycle arrest, we previously reported that all (potentially error-prone) translesion synthesis (TLS) enzymes identified in S. cerevisiae did not contribute to the basal level of spontaneous stationary-phase mutations. However, we observed that an increased frequency of stationary-phase frameshift mutations, brought about by a defective nucleotide excision repair (NER) pathway or by UV irradiation, was dependent on Rev3p, the catalytic subunit of the TLS polymerase zeta (Pol zeta). Employing the same two conditions, we now examined the effect of deletions of the genes coding for polymerase eta (Pol eta) (RAD30) and Rev1p (REV1). In a NER-deficient strain background, the increased incidence of stationary-phase mutations was only moderately influenced by a lack of Pol eta but completely reduced to wild type level by a knockout of the REV1 gene. UV-induced stationary-phase mutations were abundant in wild type and rad30Delta strains, but substantially reduced in a rev1Delta as well as a rev3Delta strain. The similarity of the rev1Delta and the rev3Delta phenotype and an epistatic relationship evident from experiments with a double-deficient strain suggests a participation of Rev1p and Rev3p in the same mutagenic pathway. Based on these results, we propose that the response of cell cycle-arrested cells to an excess of exo- or endogenously induced DNA damage includes a novel replication-independent cooperative function of Rev1p and Pol zeta, which has the potential to generate mutations.  相似文献   

12.
UV irradiation, a known carcinogen, induces the formation of dipyrimidine dimers with the predominant lesions being cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone adducts (6-4PPs). The relative roles of the yeast translesion synthesis DNA polymerases Pol zeta and Pol eta in UV survival and mutagenesis were examined using strains deficient in one or both polymerases. In addition, photoreactivation was used to specifically remove CPDs, thus allowing an estimate to be made of the relative contributions of CPDs vs. 6-4PPs to overall survival and mutagenesis. In terms of UV-induced mutagenesis, we focused on the +1 frameshift mutations detected by reversion of the lys2deltaA746 allele, as Pol zeta produces a distinct mutational signature in this assay. Results suggest that CPDs are responsible for most of the UV-associated toxicity as well as for the majority of UV-induced frameshift mutations in yeast. Although the presence of Pol eta generally suppresses UV-induced mutagenesis, our data suggest a role for this polymerase in generating some classes of +1 frameshifts. Finally, the examination of frameshift reversion spectra indicates a hierarchy between Pol eta and Pol zeta with respect to the bypass of UV-induced lesions.  相似文献   

13.
Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.  相似文献   

14.
Huang ME  Rio AG  Galibert MD  Galibert F 《Genetics》2002,160(4):1409-1422
The Pol32 subunit of S. cerevisiae DNA polymerase (Pol) delta plays an important role in replication and mutagenesis. Here, by measuring the CAN1 forward mutation rate, we found that either POL32 or REV3 (which encodes the Pol zeta catalytic subunit) inactivation produces overlapping antimutator effects against rad mutators belonging to three epistasis groups. In contrast, the msh2Delta pol32Delta double mutant exhibits a synergistic mutator phenotype. Can(r) mutation spectrum analysis of pol32Delta strains revealed a substantial increase in the frequency of deletions and duplications (primarily deletions) of sequences flanked by short direct repeats, which appears to be RAD52 and RAD10 independent. To better understand the pol32Delta and rev3Delta antimutator effects in rad backgrounds and the pol32Delta mutator effect in a msh2Delta background, we determined Can(r) mutation spectra for rad5Delta, rad5Delta pol32Delta, rad5Delta rev3Delta, msh2Delta, msh2Delta pol32Delta, and msh2Delta rev3Delta strains. Both rad5Delta pol32Delta and rad5Delta rev3Delta mutants exhibit a reduction in frameshifts and base substitutions, attributable to antimutator effects conferred by the pol32Delta and rev3Delta mutations. In contrast, an increase in these two types of alterations is attributable to a synergistic mutator effect between the pol32Delta and msh2Delta mutations. Taken together, these observations indicate that Pol32 is important in ensuring genome stability and in mutagenesis.  相似文献   

15.
The REV3 gene encodes the catalytic subunit of DNA polymerase (pol) zeta, which can replicate past certain types of DNA lesions [1]. Saccharomyces cerevisiae rev3 mutants are viable and have lower rates of spontaneous and DNA-damage-induced mutagenesis [2]. Reduction in the level of Rev31, the presumed catalytic subunit of mammalian pol zeta, decreased damage-induced mutagenesis in human cell lines [3]. To study the function of mammalian Rev31, we inactivated the gene in mice. Two exons containing conserved DNA polymerase motifs were replaced by a cassette encoding G418 resistance and beta-galactosidase, under the control of the Rev3l promoter. Surprisingly, disruption of Rev3l caused mid-gestation embryonic lethality, with the frequency of Rev3l(-/-) embryos declining markedly between 9.5 and 12.5 days post coitum (dpc). Rev3l(-/-) embryos were smaller than their heterozygous littermates and showed retarded development. Tissues in many areas were disorganised, with significantly reduced cell density. Rev3l expression, traced by beta-galactosidase staining, was first detected during early somitogenesis and gradually expanded to other tissues of mesodermal origin, including extraembryonic membranes. Embryonic death coincided with the period of more widely distributed Rev3l expression. The data demonstrate an essential function for murine Rev31 and suggest that bypass of specific types of DNAlesions by pol zeta is essential for cell viability during embryonic development in mammals.  相似文献   

16.
Changing a highly conserved amino acid in motif A of any of the four yeast family B DNA polymerases, DNA polymerase alpha, delta, epsilon or zeta, results in yeast strains with elevated mutation rates. In order to better understand this phenotype, we have performed structure-function studies of homologous mutants of RB69 DNA polymerase (RB69 pol), a structural model for family B members. When Leu415 in RB69 pol is replaced with phenylalanine or glycine, the mutant polymerases retain high-catalytic efficiency for correct nucleotide incorporation, yet have increased error rates due to increased misinsertion, increased mismatch extension and inefficient proofreading. The Leu415Phe mutant also has increased dNTP insertion efficiency opposite a template 8-oxoG and opposite an abasic site. The 2.5 A crystal structure of a ternary complex of RB69 L415F pol with a correctly base-paired incoming dTTP reveals that the phenylalanine ring is accommodated within a cavity seen in the wild-type enzyme, without steric clash or major change in active site geometry, consistent with retention of high-catalytic efficiency for correct incorporation. In addition, slight structural differences were observed that could be relevant to the reduced fidelity of L415F RB69 pol.  相似文献   

17.
Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase η (Polη) and polymerase ζ (Polζ), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310–1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Δ, rev3Δ and rev3Δ rad30Δ strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6–4) photoproducts derived from studies with UVC. They further suggest that Polη participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polζ is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polζ, Polη contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine.  相似文献   

18.
Polymerase zeta (Pol zeta) is an error-prone DNA polymerase [1], which in yeast is involved in trans-lesion synthesis (TLS) and is responsible for most of the ultraviolet (UV) radiation-induced and spontaneous mutagenesis [2-4]. Pol zeta consists of three subunits: REV1, a deoxycytidyl-transferase [5]; REV7, of unclear function [6]; and REV3, the catalytic subunit. REV3 alone is sufficient to carry out TLS, but association with REV1 and REV7 enhances its activity [5, 7]. Experiments using human cells treated with UV radiation indicate also that mammalian Pol zeta is involved in TLS [7]. The peculiar mutagenic activity of Pol zeta [4,7,8] suggests a possible role in somatic hypermutation of immunoglobulin (Ig) genes [9]. Here, we report that, unlike in yeast where the REV3 gene is not essential for life [4], disruption of the mouse homologue (Rev3l) resulted in early embryonic lethality. In Rev3l(-/-) embryos, no haematopoietic cells other than erythrocytes could be identified in the yolk sac. Rev3l(-/-) haematopoietic precursors were unable to expand in vitro and no haematopoietic cells could be derived from the intraembryonic haematogenic compartment (splanchnopleura). Fibroblasts could not be derived from the Rev3l(-/-) embryos, and Rev3l(-/-) embryonic stem (ES) cells could not be obtained. This is the first evidence that an enzyme involved in TLS is critical for mammalian development.  相似文献   

19.
20.
H. Roche  R. D. Gietz    B. A. Kunz 《Genetics》1994,137(3):637-646
The yeast REV3 gene has been predicted to encode a DNA polymerase specializing in translesion synthesis. This polymerase likely participates in spontaneous mutagenesis, as rev3 mutants have an antimutator phenotype. Translesion synthesis also may be necessary for the mutator caused by a RAD1 (nucleotide excision repair) deletion (rad1Δ). To further examine the role of REV3 in spontaneous mutagenesis, we characterized SUP4-o mutations that arose spontaneously in strains having combinations of normal or mutant REV3 and RAD1 alleles. The largest fraction of the rev3Δ-dependent mutation rate decrease was observed for single base-pair substitutions and deletions, although the rates of all mutational classes detected in the RAD1 background were reduced by at least 30%. Interestingly, inactivation of REV3 was associated with a doubling of the number of sites at which the retrotransposon Ty inserted. rev3Δ also greatly diminished the magnitude of the rad1Δ mutator, but not to the rev3Δ antimutator level, implicating REV3-dependent and independent processes in the rad1Δ mutator effect. However, the specificity of the rev3Δ antimutator suggested that the same REV3-dependent processes gave rise to the majority of spontaneous mutations in the RAD1 and rad1Δ strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号