首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tumor-targeted delivery of a potent cytotoxic agent, calicheamicin, using its immunoconjugates is a clinically validated therapeutic strategy. Rituximab is a human CD20-specific chimeric antibody extensively used in B-NHL therapy. We investigated whether conjugation to calicheamicin can improve the anti-tumor activity of rituximab against human B-cell lymphoma (BCL) xenografts in preclinical models. BCL cells were cultured with rituximab or its calicheamicin conjugates and their in vitro growth was monitored. BCL cells were injected s.c. to establish localized xenografts in nude mice or i.v. to establish disseminated BCL in severe combined immunodeficient (scid) mice. I.p. treatment with rituximab or its calicheamicin conjugates was initiated and its effect on s.c. BCL growth or survival of mice with disseminated BCL was monitored. Conjugation of calicheamicin to rituximab vastly enhanced its growth inhibitory activity against BCL in vitro. Conjugation to calicheamicin had no deleterious effect on the effector functional activity of rituximab. Calicheamicin conjugated to rituximab with an acid-labile linker exhibited greater anti-tumor activity against s.c. BCL xenografts and improved survival of mice with disseminated BCL over that of unconjugated rituximab. Anti-tumor activities of rituximab conjugated to calicheamicin via an acid-stable linker were similar to that of unconjugated rituximab. Superior anti-tumor efficacy exhibited by a calicheamicin immunoconjugate of rituximab with an acid-labile linker over that of rituximab demonstrates the therapeutic potential of CD20-specific antibody-targeted chemotherapy strategy in the treatment of B-NHL. All authors are employed by Wyeth Research.  相似文献   

2.
CD33 is expressed by acute myeloid leukemia (AML) cells in >80% of patients but not by normal hematopoietic stem cells, suggesting that elimination of CD33(+) cells may be therapeutically beneficial. A conjugate of a calicheamicin hydrazide derivative attached via hydrazone formation to the oxidized carbohydrates of the anti-CD33 murine antibody P67.6 had been chosen for use in AML prior to humanization of this antibody. However, the CDR-grafted humanized P67.6 could not be used to make the carbohydrate conjugate because of the unexpected sensitivity of this antibody to periodate oxidation. Exploration of a series of bifunctional linkers resulted in a new class of calicheamicin conjugates, termed the hybrid conjugates, that allows for the attachment of the calicheamicin to lysines but incorporates the site of hydrolytic release, a hydrazone, previously shown to be required for activity. The optimized conjugate chosen for clinical trials, gemtuzumab ozogamicin ("gem-ozo", Mylotarg, formerly designated CMA-676), was significantly more potent and selective than the carbohydrate conjugate it replaced. It was selectively cytotoxic to HL-60 leukemia cells in tissue culture with an IC(50) in the low to sub-pg cal/mL range (cal = calicheamicin equivalents). Doses of gem-ozo as low as 50 microg cal/kg given three times to mice bearing HL-60 xenografts routinely resulted in long-term, tumor-free survivors, while a nonbinding control conjugate was relatively inactive. Gem-ozo at a concentration of 2 to 10 ng cal/mL selectively inhibited leukemia colony formation by marrow cells from a significant proportion of AML patients. Gem-ozo has also shown significant activity against AML in Phase II trials and is the first antibody-targeted chemotherapeutic agent approved by the FDA.  相似文献   

3.
The anti-CD33 antibody, P67.6, has been chosen to target the potently cytotoxic calicheamicin antitumor antibiotics to acute myeloid leukemia (AML) due to the presence of CD33 on >80% of patient samples and its lack of expression outside the myeloid cell lineages, especially its lack of expression on pluripotent stem cells. Previous calicheamicin conjugates relied on the attachment of a hydrazide derivative to the oxidized carbohydrates that occur naturally on antibodies. This results in a "carbohydrate conjugate" capable of releasing active drug by hydrolysis of a hydrazone bond in the lysozomes where the pH is low. Conjugates have now been made that are formed by reacting a calicheamicin derivative containing an activated ester with the lysines of antibodies. This results in an "amide conjugate" that is stable to hydrolysis, leaving the disulfide that is present in all calicheamicin conjugates as the likely site of drug release from the conjugate. In this article, these two classes of calicheamicin-antibody conjugates are compared for potential use in AML with the anti-CD33 antibody P67.6. Conjugates of P67.6 are shown to require the site of hydrolytic release afforded by the carbohydrate conjugates in order to retain good potency and selectivity in vitro, in vivo, and ex vivo. The P67.6 carbohydrate conjugate of calicheamicin is selectively cytotoxic at <0.006 ng/mL of calicheamicin equivalents (cal equiv) toward HL-60 promyelocytic leukemia cells in tissue culture. Long-term, tumor-free survivors are seen in xenograft models when mice bearing HL-60 subcutaneous tumors are treated with the P67.6 carbohydrate conjugate at a dose of 300 microg/kg cal equiv given three times. This conjugate also selectively inhibits the formation of colonies from AML marrow samples at 2 ng/mL cal equiv. The P67.6 carbohydrate conjugate of calicheamicin therefore appears to have promise as an antibody-targeted chemotherapeutic agent for CD33-positive diseases such as AML.  相似文献   

4.
We show that antibodies to the CD44 molecule trigger proliferation of human CD3+/CD4+ T-cell clones. Such effect is IL2-dependent, as shown by IL2 production induced by anti-CD44 mAb and by inhibition of cell proliferation in the presence of anti-IL2 antibodies or cyclosporin A (CsA). Moreover, anti-CD44 mAb triggered human cytolytic CD4+ and CD8+ TCR /+ clones, and V1 or V2 TCR Y/+ clones to lyse Fc-gamma-R+ P815 cells and to release granule trypsin-like esterase enzymes. Anti-CD44 mAb-triggered proliferation and cytotoxicity were blocked by the PTK-inhibitor, genestein. In addition, ligation of the CD44 molecule induced tyrosine phosphorylation of proteins identical, by molecular weight, to those phosphorylated following anti-CD3 mAb-stimulation. Notably, anti-CD44 mAb does not induce tyrosine phosphorylation of a 21 kD protein (the phosphorylated zeta chain of the TcR molecular complex) typically observed upon anti-CD3 mAb stimulation.  相似文献   

5.
CD22 is a B-cell specific membrane glycoprotein that mediates homotypic and heterotypic cell adhesion; it also regulates B-cell receptor (BCR)-mediated signals. Monoclonal antibodies (mAb) directed at the ligand binding domain of CD22 initiate CD22-mediated signal transduction and apoptosis in B-cell lymphomas (NHL). Amino acid analysis of the complimentary determining regions (CDRs) of six different anti-CD22 ligand blocking mAb revealed a high level of sequence conservation. The heavy chain CDRs 1, 2, and 3 are 85, 40, and 38% conserved, respectively; light chain CDRs 1, 2, and 3, are 95, 90 and 90% conserved, respectively. Based on these conserved sequences, five peptides were designed and synthesized. Only the sequence derived from heavy chain CDR2 (Peptide 5) demonstrated significant B-cell binding. Peptide 5 bound to both malignant and primary B-cells with very little T-cell binding. The affinity had a Km of 5 × 10−6 M. Peptide 5 mediated killing of several NHL cell lines to a degree similar to that of the parent mAb (HB22.7). Peptide 5’s loop structure was shown to be crucial for B-cell binding and ligand blocking. Mutational analysis revealed that most Peptide 5 amino acids were critical for B cell binding. Using a CD22 transfected COS cell line, we demonstrated CD22-specific binding and CD22 ligand blocking to a degree similar to HB22.7. Finally Peptide 5 was used as a vehicle to deliver a pro-apoptotic peptide into NHL cells. Peptide 5 was fused to a BH3 death domain-containing peptide which demonstrated more effective NHL cell killing than the parent peptide.  相似文献   

6.
The anti-MUC1 antibody, CTM01, has been chosen to target the potently cytotoxic calicheamicin antitumor antibiotics to solid tumors of epithelial origin that express this antigen. Earlier calicheamicin conjugates relied on the attachment of a hydrazide derivative to the oxidized carbohydrates that occur naturally on antibodies. This produced a "carbohydrate conjugate" capable of releasing active drug by hydrolysis in the lysosomes where the pH is low. Conjugates have now been made that are formed by reacting a calicheamicin derivative containing an activated ester with the lysines of antibodies. This gives an "amide conjugate" that is stable to hydrolysis, leaving the disulfide that is present in all calicheamicin conjugates as the only likely site of drug release from the conjugate. As previously shown for the carbohydrate conjugate, this amide conjugate of CTM01 produces complete regressions of xenograft tumors at doses of 300 microg/kg (calicheamicin equivalents) given three times. This indicates that hydrolytic drug release is not necessary for potent, selective cytotoxicity for calicheamicin conjugates of CTM01. Although the unconjugated calicheamicins are in general less active in cells expressing the multidrug resistance phenotype, both in vitro and in vivo results of studies reported here suggest that the efficacy of the calicheamicins toward such tumors is unexpectedly enhanced by antibody conjugation, especially for the "amide conjugate". These hydrolytically stable conjugates are also active toward cisplatin-resistant ovarian carcinoma cells as well. Such studies indicate that the calicheamicin amide conjugate of CTM01 may have potential for the treatment of MUC1-positive solid tumors, including some types of resistant tumors.  相似文献   

7.
CD22 represents a promising target for antibody-drug conjugate therapy in the context of B cell malignancies since it rapidly internalizes, importing specifically bound antibodies with it. To determine the pharmacokinetic parameters of anti-CD22-MCC-DM1 and MC-MMAF conjugates, various approaches to quantifying total and conjugated antibody were investigated. Although the total antibody assay formats gave similar results for both conjugates, the mouse pharmacokinetic profile for the anti-CD22-MCC-DM1 and MC-MMAF appeared significantly different depending on the conjugated antibody assay format. Since these differences significantly impacted the PK parameters determination, we investigated the effect of the drug/antibody ratio on the total and conjugated antibody quantification using multiple assay formats. Our investigations revealed the limitations of some assay formats to quantify anti-CD22-MCC-DM1 and MC-MMAF with different drug load and in the context of a heterogeneous ADC population highlight the need to carefully plan the assay strategy for the total and conjugated antibody quantification in order to accurately determine the ADC PK parameters.  相似文献   

8.
9.
The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma, leukemia and autoimmune diseases, treating currently over 1500 cases of non-Hodgkin lymphoma, acute lymphoblastic leukemias, Waldenström’s macroglobulinemia, Sjögren’s syndrome, and systemic lupus erythematosus. Because epratuzumab reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity and negligible complement-dependent cytotoxicity when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and β7 integrin, on the surface of B cells in peripheral blood mononuclear cells obtained from normal donors or SLE patients. Rituximab has clinical activity in lupus, but failed to achieve primary endpoints in a Phase III trial. This is the first study of trogocytosis mediated by bispecific antibodies targeting neighboring cell-surface proteins, CD22, CD20, and CD19, as demonstrated by flow cytometry and immunofluorescence microscopy. We show that, compared to epratuzumab, a bispecific hexavalent antibody comprising epratuzumab and veltuzumab (humanized anti-CD20 mAb) exhibits enhanced trogocytosis resulting in major reductions in B-cell surface levels of CD19, CD20, CD21, CD22, CD79b, CD44, CD62L and β7-integrin, and with considerably less immunocompromising B-cell depletion that would result with anti-CD20 mAbs such as veltuzumab or rituximab, given either alone or in combination with epratuzumab. A CD22/CD19 bispecific hexavalent antibody, which exhibited enhanced trogocytosis of some antigens and minimal B-cell depletion, may also be therapeutically useful. The bispecific antibody is a candidate for improved treatment of lupus and other autoimmune diseases, offering advantages over administration of the two parental antibodies in combination.  相似文献   

10.
HA22-LR is a recombinant immunotoxin for the treatment of B-cell malignancies that contains the Fv portion of an anti-CD22 antibody fused to a functional portion of Pseudomonas exotoxin A. In the present study, we attempted to improve this molecule. First, we produced a single-chain version of HA22-LR (scdsFv-HA22-LR) in which a peptide linker was introduced between the disulfide-linked light and heavy chains to enable production via single fermentation. No difference in cytotoxic activity was observed between scdsFv-HA22-LR and prototype HA22-LR. Next, we attempted to increase the affinity of scdsFv-HA22-LR by using alanine scanning mutagenesis of complementarity determining regions (CDRs) to assess the specific contribution of each CDR residue to the antigen binding. We found that mutation of asparagine 34 in VLCDR1, which is located at the VL/VH interface, to alanine (N34A) caused a substantial increase in affinity and activity. Estimated KD values measured by fluorescence-activated cell sorting were lowered by 10-fold: 0.056 nM in the N34A mutant compared to 0.58 nM in wild type (WT). Cell viability assays of CD22-positive B-cell lymphoma and leukemia cell lines showed that the N34A mutant had increased cytotoxicity ranging from ∼2 (HAL-1, IC50(WT): 2.37 ± 0.62 ng/ml, IC50(N34A): 1.32 ± 0.41 ng/ml) to 10 (SUDHL-6, IC50(WT): 0.47 ± 0.090 ng/ml, IC50(N34A): 0.048 ± 0.018 ng/ml)-fold compared to WT immunotoxin. The present study suggests that the N34A mutant of scdsFv-HA22-LR could have important consequences in a clinical setting.Key words: immunotoxin, HA22, affinity-maturation, alanine scan, VH/VL interface  相似文献   

11.
Altered expression of cell adhesion molecule expression has been implicated in a variety of chronic inflammatory conditions. Regulation of adhesion molecule expression by specific redox sensitive mechanisms has been reported. Grape seed proanthocyanidins have been reported to have potent antioxidant properties. We evaluated the effects of grape seed proanthocyanidin extract (GSPE) on the expression of TNF-induced ICAM-1 and VCAM-1 expression in primary human umbilical vein endothelial cells (HUVEC). GSPE at low concentrations (1-5 g/ml), down-regulated TNF-induced VCAM-1 expression but not ICAM-1 expression in HUVEC. Such regulation of inducible VCAM-1 by GSPE was also observed at the mRNA expression level. A cell-cell co-culture assay was performed to verify whether the inhibitory effect of GSPE on the expression of VCAM-1 was also effective in down-regulating actual endothelial cell/leukocyte interaction. GSPE treatment significantly decreased TNF-induced adherence of T-cells to HUVEC. Although several studies have postulated NF-B as the molecular site where redox active substances act to regulate agonist-induced ICAM-1 and VCAM-1 gene expression, inhibition of inducible VCAM-1 gene expression by GSPE was not through a NF-B-dependent pathway as detected by a NF-B reporter assay. The potent inhibitory effect of low concentrations of GSPE on agonist-induced VCAM-1 expression suggests therapeutic potential of this extract in inflammatory conditions and other pathologies involving altered expression of VCAM-1.  相似文献   

12.
13.
Genetic transformation of Wangiella dermatitidis was studied using three plasmid vectors (pAN7-1, pWU44, and pKK5) and both electroporation and polyethyleneglycol-mediated methods. pAN7-1 contains the E. coli hygromycin B (HmB) phosphotransferase (hph) gene. Expression of the hph gene confers resistance to antibiotic HmB. Selection for resistance, indicative of transformation, resulted in 10–203 HmB-resistant colonies/g pAN7-1 on medium containing 100 g HmB/ml. Strains of W. dermatitidis used in this study have innate sensitivity to HmB at a critical inhibitory concentration of 20–40 g/ml. Vectors pWU44 and pKK5 contain a URA5 gene from Podospora anserina. A ura5 auxotroph of W. dermatitidis was transformed to prototrophy with pWU44 or pKK5 by complementation. Transformation frequencies for these two plasmids were between 17–50 transformants/g vector DNA. Southern blotting analysis and polymerase chain reaction detection of DNA from putative transformants confirmed transformation.  相似文献   

14.
Summary In studies of antitumor antibody-cytotoxic agent conjugates as potential antitumor agents with improved tumor specificity, the toxic subunit A-chain of ricin was conjugated with a monoclonal antibody to a tumor-associated antigen expressed weakly on murine leukemia L1210 cells and strongly on L1210/GZL cells, a guanazole-resistant subline of L1210, employing N-succinimidyl 3-(2-pyridyldithio)propionate as cross-linking agent. The conjugate (anti-L1210 conjugate) exhibited a potent concentration-dependent cytotoxicity against cultured L1210/GZL cells, and inhibited cell growth at concentrations over 0.8 g/ml. The conjugate killed all L1210/GZL cells at a concentration of 100 g/ml. Neither nonimmune conjugate similarly prepared from mouse nonimmune IgG nor unconjugated anti-L1210 IgG alone showed cytotoxicity against L1210/GZL cells. When (BALB/c×DBA/2)F1 mice inoculated with 1 × 105 L1210/GZL cells were treated with IP injections of 27 g anti-L1210 conjugate 1 h and 5 days after tumor cell inoculation, a life-prolonging effect was observed. [Lifespan in treated animals as percentage of that in controls (T/C)=146%]. However, when the dose per injection was increased to 50 g per mouse, survival was the same as in the control group. Postmortem examination of mice that had been treated with 50 g anti-L1210 conjugate revealed lesions with necrosis and hemorrhage in the liver parenchyma and the intestinal epithelium, respectively. A similar toxic effect on the host mice was also observed with nonimmune conjugate.  相似文献   

15.
Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including florescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10g for 1 min, and then allowed 1 hour at 4°C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44+) and MDA-MB-453 cells (CD44), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44+ is a commonly used cancer-stem-cell biomarker, our targeted biotin-MBs could be a potent tool to sort cancer stem cells from dissected tumor tissue for use in preclinical experiments and clinical trials.  相似文献   

16.
CD47 is a widely expressed cell surface protein that functions as a regulator of phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, SIRP-alpha, which in turn delivers an inhibitory signal for phagocytosis. We previously found increased expression of CD47 on primary human acute myeloid leukemia (AML) stem cells, and demonstrated that blocking monoclonal antibodies directed against CD47 enabled the phagocytosis and elimination of AML, non-Hodgkin’s lymphoma (NHL), and many solid tumors in xenograft models. Here, we report the development of a humanized anti-CD47 antibody with potent efficacy and favorable toxicokinetic properties as a candidate therapeutic. A novel monoclonal anti-human CD47 antibody, 5F9, was generated, and antibody humanization was carried out by grafting its complementarity determining regions (CDRs) onto a human IgG4 format. The resulting humanized 5F9 antibody (Hu5F9-G4) bound monomeric human CD47 with an 8 nM affinity. Hu5F9-G4 induced potent macrophage-mediated phagocytosis of primary human AML cells in vitro and completely eradicated human AML in vivo, leading to long-term disease-free survival of patient-derived xenografts. Moreover, Hu5F9-G4 synergized with rituximab to eliminate NHL engraftment and cure xenografted mice. Finally, toxicokinetic studies in non-human primates showed that Hu5F9-G4 could be safely administered intravenously at doses able to achieve potentially therapeutic serum levels. Thus, Hu5F9-G4 is actively being developed for and has been entered into clinical trials in patients with AML and solid tumors (ClinicalTrials.gov identifier: NCT02216409).  相似文献   

17.
Odontophrynus americanus has 2n=44 chromosomes in somatic and gonad cells which can be ordered in 11 groups of homologues. In spermatocytes I they form mostly ring quadrivalents. In metaphase II 22 dyads are present. There is no indication of abnormalities in and gonad development.  相似文献   

18.
High-molecular-weight, branched N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers were synthesized and conjugated with Fab' fragments of the anti-CD20 antibody, 1F5. This produced multivalent conjugates with varying valency (amount of Fab' per macromolecule) targeted to the B-cell antigen CD20. The apoptotic activity of the conjugates was screened against several B-cell lymphomas with varied expression levels of CD20 (Raji, Daudi, Ramos, Namalwa, and DG-75). The multivalent conjugates had the strongest activity against cells that had the highest expression of CD20 and failed to demonstrate any measurable activity against lymphomas that did not express the antigen. Furthermore, there was an apparent dose-dependent response to treatment with multivalent conjugates. At optimal valence and concentration, the apoptotic activity of HPMA copolymer-Fab' conjugates superseded that of free anti-CD20 Ab that was hyper-cross-linked with a polyclonal, secondary Ab.  相似文献   

19.
Natural killer (NK) cell recognition and formation of a conjugate with target cells, followed by intracellular signal pathway activation and degradation of cytolytic granules, are essential for NK cell cytotoxicity. In this study, NK92 cells were used to investigate synapse formation and subsequent signaling after binding to the target cell. The binding rate of the NK92-target cell was associated with NK92 cell cytotoxicity. Confocal results showed that adhesion molecules, LFA-1 (CD11a) and CD2, accumulated at the interface of the NK92-K562 contact. Ligation with K562 cells activated the Erk1/2 signal pathway of NK92 cells. The blocking of the NK-target conjugate by EDTA or anti-CD11a or/and anti-CD2 antibody decreased the phosphorylation of Erk1/2 and NK cell cytotoxicity. Inhibition of Erk1/2 phosphorylation by the chemical inhibitor U0126 suppressed the cytolytic activity of NK92 cells, but had no effect on NK-target conjugate formation. Thus, conjugate formation of the NK92-target cell was prerequisite to NK cell activation, and subsequent signal transduction was also required for NK cell cytotoxicity.Natural killer (NK)3 cells are a population of granular lymphocytes that play an essential role in cellular immune defense against a variety of tumor cells, virus-infected cells, or allogeneic cells (13). NK cells are critical for host immunity for their ability for a quick cytotoxic response and to produce a wide variety of cytokines and chemokines to modulate other cellular components of the immune system (4, 5). NK cells express two functional types of receptors: activating and inhibitory receptors (68). The effector function of NK cells is regulated by a balance between opposite signals delivered by the MHC class I-specific inhibitory receptors and the activating receptors responsible for NK cell triggering to permit elimination of pathogens (6).NK cell recognition and binding to target cells, as well as formation of conjugates, are essential for NK cell cytotoxicity (9). Conjugate formation by the NK cell with a target cell is a process mediated by integrins and immunoglobulin superfamily molecules including CD2, CD11a (LFA-1), CD11b, CD11c, and CD28, which also participate in the promotion of NK cell function (1012). They participate in adhesion between the NK cell and the target cell, and blocking antibodies suppress the adhesion. In addition to possessing an adhesive role, ligation of CD2 induces kinase function and lipid raft polarization (11), whereas ligation of CD11a, CD11b, and CD11c induces phosphorylation-dependent NK cell activation (13, 14). The interaction of specific cell surface receptors with their ligands on a target cell at their interface forms specific activating NK cell immunological synapses and leads to the activation of a cascade of intracellular signals, resulting in Ca2+ flux, polarization of granules, and subsequent release of lytic molecules (13, 15, 16). The Erk1/2 (p44/42 mitogen-activated protein kinase) pathway plays an important role in NK cell cytotoxicity (1721). Inhibition of Erk1/2 might block NK cell cytolytic activity by compromising the release of perforin (22). In this study, the roles of adhesion molecules in NK92-target cell conjugate formation of immunological synapse, and subsequent Erk1/2 activation in NK92 cells was investigated.  相似文献   

20.
Absorption (ABS) and circular dichroism (CD) spectra were recorded for 6 concentrations (2.0–290 M) of bacteriochlorophyll (BChl) c in each solvent. Monomer spectra were obtained by adding methanol (1:200) to each sample. The monomer showed an ABS peak and a CD trough at 664 nm in CH2Cl2 (ABS peak at 665 nm in CCl4). Dimer-plus-monomer spectra were obtained by subtracting high concentration (e.g., 290 M) spectra appropriately scaled from lower concentration (e.g., 26 M) spectra. Pure dimer spectra were then obtained by subtracting monomer spectra appropriately scaled from dimer-plus-monomer spectra. The dimer showed an ABS peak at 679 nm in both CH2Cl2 and CCl4 and a CD trough at ca. 670 nm in CH2Cl2. The optical properties of the dimer do not agree with the model for bacteriochlorophyllide d [Smith KM, Bobe FW, Goff DA and Abraham RJ (1986) J Am Chem Soc 108: 1111–1120]. Higher aggregate spectra were obtained by subtracting appropriately scaled monomer and dimer spectra from high concentration (e.g., 290 M) spectra. The aggregate showed ABS shoulders at ca. 636 and 678 nm with a peak at 702 nm in CH2Cl2 and at 708 nm in CCl4; the CD spectrum in either solvent showed peaks at 638 and 679 nm with troughs at 658 and ca. 710 nm. These spectra are consistent with an excitonic interaction between 4 chromophores in the aggregate. Each of the 12 original ABS spectra was deconvoluted in terms of the appropriate monomer, dimer and aggregate spectra, and the concentrations of each component were determined. Plots of log aggregate concentration vs. log dimer concentration lay on or near a line of slope 1.9 for CH2Cl2 and on or near a line of slope 2.1 for CCl4. The aggregate was thus shown to be a tetramer. The theoretical relationship between dimers and monomers (slope 2.0) was not observed in all cases.Abbreviations ABS absorbance - BChl bacteriochlorophyll - CD circular dichroism - Chl chlorophyll - DNS data not shown - PEF 4-n-propyl-5-ethyl farnesyl  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号