首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytomegaloviruses express glycoproteins that interfere with antigen presentation to CD8 T cells. Although the molecular modes of action of these "immunoevasins" differ between cytomegalovirus species, the convergent biological outcome is an inhibition of the recognition of infected cells. In murine cytomegalovirus, m152/gp40 retains peptide-loaded major histocompatibility complex class I molecules in a cis-Golgi compartment, m06/gp48 mediates their vesicular sorting for lysosomal degradation, and m04/gp34, although not an immunoevasin in its own right, appears to assist in the concerted action of all three molecules. Using the L(d)-restricted IE1 epitope YPHFMPTNL in the BALB/c mouse model as a paradigm, we provide here an explanation for the paradox that immunoevasins enhance CD8 T-cell priming although they inhibit peptide presentation in infected cells. Adaptive immune responses are initiated in the regional lymph node (RLN) draining the site of pathogen exposure. In particular for antigens that are not virion components, the magnitude of viral gene expression providing the antigens is likely a critical parameter in priming efficacy. We have therefore focused on the events in the RLN and have related priming to intranodal viral gene expression. We show that immunoevasins enhance priming by downmodulating an early CD8 T-cell-mediated "negative feedback" control of the infection in the cortical region of the RLN, thus supporting the model that immunoevasins improve antigen supply for indirect priming by uninfected antigen-presenting cells. As an important consequence, these findings predict that deletion of immunoevasin genes in a replicative vaccine virus is not a favorable option but may, rather, be counterproductive.  相似文献   

2.
Horizontal transmission of cytomegaloviruses (CMV) occurs via prolonged excretion from mucosal surfaces. We used murine CMV (MCMV) infection to investigate the mechanisms of immune control in secretory organs. CD4 T cells were crucial to cease MCMV replication in the salivary gland (SG) via direct secretion of IFNγ that initiated antiviral signaling on non-hematopoietic cells. In contrast, CD4 T cell helper functions for CD8 T cells or B cells were dispensable. Despite SG-resident MCMV-specific CD8 T cells being able to produce IFNγ, the absence of MHC class I molecules on infected acinar glandular epithelial cells due to viral immune evasion, and the paucity of cross-presenting antigen presenting cells (APCs) prevented their local activation. Thus, local activation of MCMV-specific T cells is confined to the CD4 subset due to exclusive presentation of MCMV-derived antigens by MHC class II molecules on bystander APCs, resulting in IFNγ secretion interfering with viral replication in cells of non-hematopoietic origin.  相似文献   

3.
CD8+ T cells can be primed by peptides derived from endogenous proteins (direct presentation), or exogenously acquired protein (cross-presentation). However, the relative ability of these two pathways to prime CD8+ T cells during a viral infection remains controversial. Cytomegaloviruses (CMVs) can infect professional antigen presenting cells (APCs), including dendritic cells, thus providing peptides for direct presentation. However, the viral immune evasion genes profoundly impair recognition of infected cells by CD8+ T cells. Nevertheless, CMV infection elicits a very strong CD8+ T cell response, prompting its recent use as a vaccine vector. We have shown previously that deleting the immune evasion genes from murine cytomegalovirus (MCMV) that target class I MHC presentation, has no impact on the size or breadth of the CD8+ T cell response elicited by infection, suggesting that the majority of MCMV-specific CD8+ T cells in vivo are not directly primed by infected professional APCs. Here we use a novel spread-defective mutant of MCMV, lacking the essential glycoprotein gL, to show that cross-presentation alone can account for the majority of MCMV-specific CD8+ T cell responses to the virus. Our data support the conclusion that cross-presentation is the primary mode of antigen presentation by which CD8+ T cells are primed during MCMV infection.  相似文献   

4.
Herpes simplex virus (HSV) has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP) 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC) class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.  相似文献   

5.
The immune system surveys the organism for the presence of foreign or abnormal structures. An important role in the immune response is assumed by T lymphocytes that recognize foreign antigen while tolerating self-proteins. T lymphocytes can recognize only peptide fragments that are presented to them by molecules of the major histocompatibility complex (MHC). Antigen processing for presentation to T cells involves distinct cellular compartments where peptides and MHC molecules interact. Whereas class I MHC molecules (recognized by CD8+ cytotoxic T cells) acquire peptides in an early biosynthetic compartment, class II molecules (recognized by CD4+ helper T cells) acquire peptides most efficiently in an endocytic compartment. It has emerged recently that the class II processing compartment can be fed not only from the outside with exogenous antigen but also from endogenous sources, including membrane-associated and cytosolic proteins. The potential sources of proteins that can trigger a helper T cell response during viral infections and that can induce self-tolerance are thus much wider than previously anticipated.  相似文献   

6.
CD8+ T cells are crucial for control of a number of medically important protozoan parasites, including Trypanosoma cruzi, the agent of human Chagas disease. Yet, in contrast to the wealth of information from viral and bacterial infections, little is known about the antigen specificity or the general development of effector and memory T-cell responses in hosts infected with protozoans. In this study we report on a wide-scale screen for the dominant parasite peptides recognized by CD8+ T cells in T. cruzi-infected mice and humans. This analysis demonstrates that in both hosts the CD8+ T-cell response is highly focused on epitopes encoded by members of the large trans-sialidase family of genes. Responses to a restricted set of immunodominant peptides were especially pronounced in T. cruzi-infected mice, with more than 30% of the CD8+ T-cell response at the peak of infection specific for two major groups of trans-sialidase peptides. Experimental models also demonstrated that the dominance patterns vary depending on the infective strain of T. cruzi, suggesting that immune evasion may be occurring at a population rather than single-parasite level.  相似文献   

7.
Murine cytomegalovirus encodes three regulators of antigen presentation to antiviral CD8 T cells. According to current paradigms, all three regulators are committed to the inhibition of the presentation of antigenic peptides. Whereas m152/gp40 catalyzes the retention of peptide-loaded major histocompatibility complex (MHC) class I molecules in a cis-Golgi compartment, m06/gp48 binds stably to class I molecules and directs them into the cellular cargo-sorting pathway of lysosomal degradation. Regulator m04/gp34 also binds stably to class I molecules, but unlike m152 and m06, it does not downmodulate MHC class I cell surface expression. It has entered the literature as a direct inhibitor of T-cell recognition of the MHC-peptide complex at the cell surface. In this work, we have studied the presentation of antigenic viral peptides in cells infected with a comprehensive set of mutant viruses expressing the three regulators separately as well as in all possible combinations. The results redefine m04 as a positive regulator dedicated to the facilitation of antigen presentation. When expressed alone, it did not inhibit T-cell recognition, and when expressed in the presence of m152, it restored antigen presentation by antagonizing the inhibitory function of m152. Its intrinsic positive function, however, was antagonized and even slightly overcompensated for by the negative regulator m06. In an adoptive cell transfer model, the opposing forces of the three regulators were found to govern immune surveillance in the infected host. While negative regulators, also known as immunoevasins, are common, the existence of a positive regulator is without precedent and indicates an intriguing genetic potential of this virus to influence antigen presentation.  相似文献   

8.
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention.  相似文献   

9.
E protein is a membrane component of severe acute respiratory syndrome coronavirus (SARS-CoV). Disruption of E protein may reduce viral infectivity. Thus, the SARS-CoV E protein is considered a potential target for the development of antiviral drugs. However, the cellular immune responses to E protein remain unclear in humans. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of 9 peptides overlapping the entire E protein sequence. Analysis of the immune responses by flow cytometry showed that both CD4+ and CD8+T cells were involved in the SARS-CoV E-specific immune responses after stimulation with SARS-CoV E peptides. Moreover, the majority of IFN-gamma+CD4+T cells were central memory cells expressing CD45RO+CCR7+CD62L-; whereas IFN-gamma+CD8+ memory T cells were mostly effector memory cells expressing CD45RO-CCR7-CD62L-. The results of T-cell responses to 9 individual peptides indicated that the E protein contained at least two major T cell epitopes (E2 amino acid [aa] 9-26 and E5-6: aa 33-57) which were important in eliciting cellular immune response to SARS-CoV E protein in humans.  相似文献   

10.
EBV infection is more common in patients with systemic lupus erythematosus (SLE) than in control subjects, suggesting that this virus plays an etiologic role in disease and/or that patients with lupus have impaired EBV-specific immune responses. In the current report we assessed immune responsiveness to EBV in patients with SLE and healthy controls, determining virus-specific T cell responses and EBV viral loads using whole blood recall assays, HLA-A2 tetramers, and real-time quantitative PCR. Patients with SLE had an approximately 40-fold increase in EBV viral loads compared with controls, a finding not explained by disease activity or immunosuppressive medications. The frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma was higher in patients with SLE than in controls. By contrast, the frequency of EBV-specific CD69+ CD8+ T cells producing IFN-gamma in patients with SLE appeared lower than that in healthy controls, although this difference was not statistically significant. These findings suggest a role for CD4+ T cells in controlling, and a possible defect in CD8+ T cells in regulating, increased viral loads in lupus. These ideas were supported by correlations between viral loads and EBV-specific T cell responses in lupus patients. EBV viral loads were inversely correlated with the frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma and were positively correlated with the frequencies of CD69+ CD8+ T cells producing IFN-gamma and with EBV-specific, HLA-A2 tetramer-positive CD8+ T cells. These results demonstrate that patients with SLE have defective control of latent EBV infection that probably stems from altered T cell responses against EBV.  相似文献   

11.
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.  相似文献   

12.
Class II MHC proteins bind peptides and present them to CD4 (+) T cells as part of the immune system's surveillance of bodily tissues for foreign and pathogenic material. Antigen processing and presentation pathways have been characterized in detail in normal cells, but there is little known about the actual viral peptides that are presented to CD4 (+) T cells that signal infection. In this study, two-dimensional LC-MS/MS was used to identify vaccinia virus-derived peptides among the hundreds to thousands of peptide antigens bound to the human class II MHC protein HLA-DR1 on the surface of vaccinia virus-infected cells. The peptides, derived from the I6L, D6R, and A10L viral proteins, were 15 residues in length, bound efficiently to HLA-DR1 as synthetic peptides, and were recognized by vaccinia-specific CD4 (+) T cells obtained from an immunized donor.  相似文献   

13.
Upon interruption of antiretroviral therapy, HIV-infected patients usually show viral load rebound to pre-treatment levels. Four patients, hereafter referred to as secondary controllers (SC), were identified who initiated therapy during chronic infection and, after stopping treatment, could control virus replication at undetectable levels for more than six months. In the present study we set out to unravel possible viral and immune parameters or mechanisms of this phenomenon by comparing secondary controllers with elite controllers and non-controllers, including patients under HAART. As candidate correlates of protection, virus growth kinetics, levels of intracellular viral markers, several aspects of HIV-specific CD4+ and CD8+ T cell function and HIV neutralizing antibodies were investigated. As expected all intracellular viral markers were lower in aviremic as compared to viremic subjects, but in addition both elite and secondary controllers had lower levels of viral unspliced RNA in PBMC as compared to patients on HAART. Ex vivo cultivation of the virus from CD4+ T cells of SC consistently failed in one patient and showed delayed kinetics in the three others. Formal in vitro replication studies of these three viruses showed low to absent growth in two cases and a virus with normal fitness in the third case. T cell responses toward HIV peptides, evaluated in IFN-γ ELISPOT, revealed no significant differences in breadth, magnitude or avidity between SC and all other patient groups. Neither was there a difference in polyfunctionality of CD4+ or CD8+ T cells, as evaluated with intracellular cytokine staining. However, secondary and elite controllers showed higher proliferative responses to Gag and Pol peptides. SC also showed the highest level of autologous neutralizing antibodies. These data suggest that higher T cell proliferative responses and lower replication kinetics might be instrumental in secondary viral control in the absence of treatment.  相似文献   

14.
Cellular immune responses are critical for the clearance of hepatitis C virus. Persistent infection results from a narrow and weak cellular immune response, in direct contrast to the broad, strong response associated with viral clearance in acute infection. The presence of dendritic cells in the liver facilitates presentation of viral antigens to both CD4+ and CD8+ T cell populations. Exploiting the potent antigen presentation capability of dendritic cells for immunotherapy of chronic hepatitis C is attractive; however, infection or transfection of segments or the entire hepatitis C virus genome appears to impair the allostimulation capacity of dendritic cells. If dendritic cell immunotherapy for hepatitis C virus infection is to become a reality, the mechanism behind the defective allostimulatory capacity needs to be deciphered.  相似文献   

15.
Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+) T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+) T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+) and CD8(+) T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+) and CD4(+) T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+) T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+) T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+) T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.  相似文献   

16.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

17.
CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.  相似文献   

18.
Viral peptides are presented by HLA class I on infected cells to activate CD8(+) T cells. Several immunogenic peptides have been identified indirectly by epitope prediction and screening of T cell responses to poxviral vectors, including modified vaccinia virus Ankara (MVA) currently being tested as recombinant or smallpox vaccines. However, for the development of optimal vaccination and immunomonitoring strategies, it is essential to characterize the actual viral HLA ligand repertoire of infected cells. We used an innovative approach to identify naturally processed MVA HLA ligands by differential HPLC-coupled mass spectrometry. We describe 12 viral peptides presented by HLA-A*0201 and 3 by HLA-B*0702. All HLA-A*0201 ligands participated in the memory response of MVA-immune donors, and several were immunogenic in Dryvax vaccinees. Eight epitopes were novel. Viral HLA ligand presentation and viral protein abundance did not correlate. All ligands were expressed early during the viral life cycle, and a pool of three of these mediated stronger protection against a lethal challenge in mice as compared with late epitopes. This highlights the reliability of the comparative mass spectrometry-based technique to identify relevant viral CD8(+) T cell epitopes for optimizing the monitoring of protective immune responses and the development of effective peptide-based vaccines.  相似文献   

19.
Human adenovirus (HAdV) infection is a frequent and potentially severe complication following allogeneic stem cell transplantation in children. Because treatment with antiviral drugs is often ineffective, adoptive transfer of donor-derived HAdV-specific T cells able to control viral replication of HAdV of multiple serotypes may be an option for therapy. In healthy donors, predominantly HAdV-specific T cells expressing CD4 are detected. In this study, a preclinical in vitro model was used to measure the antiviral effect of HAdV-specific CD4+ T cells. CD4+ HAdV-specific T cell clones restricted by HLA class II molecules were generated and most of these clones recognized conserved peptides derived from the hexon protein. These cross-reactive T cell clones were able to control viral replication of multiple serotypes of HAdV in EBV-transformed B cells (B-LCL), melanoma cells (MJS) and primary bronchial epithelial cells through cognate interaction. The HAdV-specific CD4+ T cell clones were able to specifically lyse infected target cells using a perforin-dependent mechanism. Antigenic peptides were also presented to the CD4+ T cell clones when derived from endogenously produced hexon protein. Together, these results show that cross-reactive HAdV-specific CD4+ T cells can control replication of HAdV in vitro and provide a rationale for the use of HAdV-specific T cells in adoptive immunotherapy protocols for control of life-threatening HAdV-infections in immunocompromised patients.  相似文献   

20.
A hallmark of human immunodeficiency virus type 1 (HIV-1) pathogenesis is the rapid loss of CD4 T cells leading to generalized immune dysfunction, including an exhausted CD8 T cell phenotype. Understanding the necessary factors that govern the functional quality and protective potential of antiviral T cell responses would facilitate rational vaccine design and improve therapeutic strategies to combat persistent infections. Mouse models of chronic viral infection demonstrate that interleukin-21 (IL-21), produced primarily by CD4 T cells, is required for the generation and maintenance of functionally competent CD8 T cells and viral containment. We reasoned that preserved IL-21 production during HIV-1 infection would be associated with enhanced CD8 T cell function, allowing improved viral control. Here we analyzed the ability of CD4 and CD8 T cells to produce several cytokines in addition to IL-21 ex vivo following stimulation with overlapping HIV-1 peptides. Both CD4 and CD8 T cells were able to produce IL-21 in response to HIV-1 infection, with the latter cell type more closely associated with viral control. Furthermore, IL-21-producing HIV-1-specific CD4 T cells (compared to those producing other cytokines) were the best indicator of functional CD8 T cells. Our results demonstrate that HIV-1-specific IL-21-producing CD8 T cells are induced following primary infection and enriched in elite controllers, suggesting a critical role for these cells in the maintenance of viremia control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号