共查询到20条相似文献,搜索用时 0 毫秒
1.
Böhm V Simon CO Podlech J Seckert CK Gendig D Deegen P Gillert-Marien D Lemmermann NA Holtappels R Reddehase MJ 《Journal of virology》2008,82(23):11637-11650
Cytomegaloviruses express glycoproteins that interfere with antigen presentation to CD8 T cells. Although the molecular modes of action of these "immunoevasins" differ between cytomegalovirus species, the convergent biological outcome is an inhibition of the recognition of infected cells. In murine cytomegalovirus, m152/gp40 retains peptide-loaded major histocompatibility complex class I molecules in a cis-Golgi compartment, m06/gp48 mediates their vesicular sorting for lysosomal degradation, and m04/gp34, although not an immunoevasin in its own right, appears to assist in the concerted action of all three molecules. Using the L(d)-restricted IE1 epitope YPHFMPTNL in the BALB/c mouse model as a paradigm, we provide here an explanation for the paradox that immunoevasins enhance CD8 T-cell priming although they inhibit peptide presentation in infected cells. Adaptive immune responses are initiated in the regional lymph node (RLN) draining the site of pathogen exposure. In particular for antigens that are not virion components, the magnitude of viral gene expression providing the antigens is likely a critical parameter in priming efficacy. We have therefore focused on the events in the RLN and have related priming to intranodal viral gene expression. We show that immunoevasins enhance priming by downmodulating an early CD8 T-cell-mediated "negative feedback" control of the infection in the cortical region of the RLN, thus supporting the model that immunoevasins improve antigen supply for indirect priming by uninfected antigen-presenting cells. As an important consequence, these findings predict that deletion of immunoevasin genes in a replicative vaccine virus is not a favorable option but may, rather, be counterproductive. 相似文献
2.
S Michelson 《Revue fran?aise de transfusion et immuno-hématologie》1984,27(3):301-307
In considering HCMV antigens one must take into consideration not only structural proteins of virus particles but also HCMV specific proteins associated with the infected cell, for all of these proteins may play a part in eliciting an humoral and/or cell-mediated immune response in the infected individual. The virion is composed of some 35 polypeptides ranging in molecular weight from 12 000 to more than 200 000 daltons (Table I). Viral polypeptide synthesis at the level of the infected cell occurs in three waves, the immediate early, the early and the late (Table II). During the immediate early and early phases a dozen polypeptides appear. Two glycoproteins appear during the early period but these are poorly represented in the virion. Many antigens have been described both in the cytoplasm and nucleus during these periods (Table II). Viral DNA synthesis marks the beginning of the late phase of virus replication. Many new proteins and glycoproteins appear but not all of them will become part of the virus particle (Table II). It is interesting to compare the kinetics of appearance of antibodies as detected by different serodiagnostic techniques, at the time of primary infection, with the location of the antigens which these antibodies detect in the infected cells (Table III). CMV-IgM, the first antibodies to be detected, react with late appearing intracellular nuclear inclusion antigens. This contrasts with the relatively long time required for the development of neutralizing antibodies which react with antigens accessible not only on the viral envelope and at the infected cell membrane.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Background
ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication.Results
We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses.Conclusion
The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV. 相似文献4.
5.
6.
7.
Summary Sera and effusion fluids of patients with breast cancer (BC) contain immune complexes (IC). Antigens present in these complexes were isolated as follows: a pool of effusions from patients with BC was fractionated with ammonium sulfate. The proteins precipitating at 40% saturation were further fractionated by filtration through a Sephadex G-200 column. The material recovered in the first peak (molecules larger than monomeric IgG) was brought to pH 3.0 to dissociate the IC, and the mixture was filtered through a column of Sephacryl S-300 at pH 3.0. Proteins smaller than monomeric IgG were collected, radioiodinated, and used as antigens (125Ag) to search for corresponding antibodies in sera of patients with BC (BCS) and of healthy individuals (NHS). 125Ag was reacted with the sera and the immune complexes obtained were precipitated with an antiserum to human Ig and analyzed by SDS-polyacrylamide gel electrophoresis followed by autoradiography. Both NHS and BCS contained antibodies against two antigens; one of these appeared as a strong band of 17KD, the other as a doublet of approximately 25KD. It is concluded that some of the proteins in the IC from patients with BC are auto-antigens. No BC-specific antigens were identified. 相似文献
8.
The role of cytokines in modulating the formation of new tumors is mediated by their ability to regulate antigen-specific anti-tumor responses and by the activation of non-specific mechanisms, including those involved in the processes of inflammation and innate resistance. Cytokines may influence the growth of tumors by acting directly on tumor cells as growth promoting or growth inhibiting factors or indirectly by attracting inflammatory cell types and affecting angiogenesis. Due to the potency and complexity of cytokine activity against tumor growth, the improvement of cloning techniques and the availability of recombinant forms of different cytokines, a great effort has been made in the recent years to exploit this anti-tumor potential for cancer therapy. This important goal has been difficult to achieve in most cases due to toxicity of most cytokines which could not be dissociated from their anti-tumoral functions. Nevertheless, if well designed, treatment protocols and/or modifications of the cytokine molecules may in some situations augment the anti-tumor effects while limiting the toxicity. One of these molecular approaches could be the design of peptides containing the functional domain of certain cytokines, exemplified by IT9302, a peptide homologous to the functional domain of IL-10, which has demonstrated to increase tumor NK cell sensitivity. 相似文献
9.
The immune system has been reported to suppress the development and progression of neoplastic lesions; however, the exact mechanisms by which neoplastic lesions and the immune system interact are not well understood. Within the last decade, tiny membrane bound particles, approximately 30-100 nm in diameter, have been observed in the blood and other body fluids. These particles, currently called exosomes, are released from many types of tissues including tumors, and they contain and carry many proteins, and mRNAs and microRNA species. We review here how tumors suppress the immune system, especially by the formation of exosomes. Exosomes released from tumors are carried in part by the vascular system to distant cells, which phagocytose them. Depending on the proteins, mRNAs or microRNAs in the exosomes and the cell type, phagocytosis of exosomes may provide a modulating signal to the cell. In the case of exosomes from tumors, uptake of the exosomes by cells of the immune system has been reported to have three main effects: 1) suppression of the number and activity of natural killer cells, 2) suppression of the activity of T cells and 3) suppression of the number and maturation of mature dendritic cells. 相似文献
10.
Microglia are the resident immune cells of the brain, and they are under permanent activity to patrol the cerebral microenvironment. A proper inhibitory feedback onto these cells is critical during both intact and injury conditions. In this issue of Neuron, Eljaschewitsch and colleagues report that such feedback is provided by the endogenous cannabinoid anandamine and CB(1/2) receptor signaling, which ultimately leads to mitogen-activated protein kinase phosphatase-1 (MKP-1) induction. MKP-1 interferes with lipopolysaccharide-induced toll-like receptor 4 signaling and limits brain damage due to exaggerated microglial reactivity following acute NMDA injury. 相似文献
11.
免疫系统识别病原微生物的主要机制之一是识别其核酸。环磷酸鸟苷-腺苷合成酶(cGAS)是一种胞质DNA感受器,感知病原DNA后激活cGAS-STING通路。该通路不仅介导天然免疫应答以抵抗多种含DNA的病原微生物感染,还能感知肿瘤来源的DNA而产生抗肿瘤免疫应答。然而,自体DNA对cGAS-STING通路的异常激活也会导致自身免疫性和炎症性疾病。本文综述了cGAS-STING信号通路及其在抗病毒天然免疫中的调控作用与功能,阐述了cGAS-STING通路在抗病毒感染和疾病中发挥的作用。 相似文献
12.
Cloak and dagger in the avoidance of immune surveillance 总被引:1,自引:0,他引:1
CD95 and CD95-ligand (CD95L) are physiological mediators of apoptosis required for the control of cell numbers in the human immune system. Discoveries in CD95-dependent mechanisms of immune evasion by tumours suggest regulation by oncogene expression. Clonal contraction of lymphocytes by a CD95/CD95L-independent mechanism has been reported and new evidence supports a role for CD95-dependent peripheral lymphocyte deletion by non-lymphoid tissue. Additionally, factors affecting the pro- and anti-inflammatory effects of CD95L point to a balance of cytokines and growth factors. 相似文献
13.
Compton T 《Trends in cell biology》2004,14(1):5-8
The ability of human cytomegalovirus (HCMV) to infect an extensive range of cell types has complicated efforts to identify cellular receptors for this significant pathogen. Recent findings demonstrate that epidermal growth factor receptor (EGFR) serves also as a receptor for HCMV. Additional evidence has shown that HCMV entry occurs in concert with immune detection through toll-like receptors. Here, the implications of EGFR activation, the existence of other receptors and the coordination of entry with the innate sensing are discussed. 相似文献
14.
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number. 相似文献
15.
《Theoretical population biology》2012,81(4):233-243
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number. 相似文献
16.
Oncogenic transformation in human and experimental animals is not necessarily followed by the appearance of a tumor mass. The immune system of the host can recognize tumor antigens by the presentation of small antigenic peptides to the receptor of cytotoxic T-lymphocytes (CTLs) and reject the nascent tumor. However, cancer cells can sometimes escape these specific T-cell immune responses in the course of somatic (genetic and phenotypic) clonal evolution. Among the tumor immune escape mechanisms described to date, the alterations in the expression of major histocompatibility complex (MHC) molecules play a crucial step in tumor development due to the role of MHC antigens in antigen presentation to T-lymphocytes and the regulation of natural killer cell (NK) cell function. In this work, we have (1) updated information on the mechanisms that allow CTLs to recognize tumor antigens after antigen processing by transformed cells, (2) described the altered MHC class I phenotypes that are commonly found in human tumors, (3) summarized the molecular mechanisms responsible for MHC class I alteration in human tumors, (4) provided evidence that these altered human leukocyte antigens (HLA) class I phenotypes are detectable as result of a T-cell immunoselection of HLA class I-deficient variants by an immunecompetent host, and (5) presented data indicating the MHC class I phenotype and the immunogenicity of experimental metastatic tumors change drastically when tumors develop in immunodeficient mice. 相似文献
17.
TRAIL: a mechanism of tumor surveillance in an immune privileged site 总被引:11,自引:0,他引:11
Lee HO Herndon JM Barreiro R Griffith TS Ferguson TA 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(9):4739-4744
TRAIL is a recently described member of the TNF superfamily. The ability of TRAIL to induce apoptosis in a large number of tumors has stimulated interest in TRAIL as a tumor therapeutic agent. Although TRAIL mRNA is expressed in a number of tissues, its functional significance to various organs is unknown. Because tumors rarely develop in the eye, we have examined this organ for functional TRAIL expression. Our analysis revealed that TRAIL mRNA and protein are constitutively expressed on numerous ocular structures, including the cornea and retina. More importantly, ocular tissue displays functional TRAIL as determined by in vitro killing of TRAIL-sensitive tumor cell lines. Previous studies have shown that ocular tissue also expresses functional Fas ligand (FasL). To assess the contribution of TRAIL and FasL for tumor cell killing in the eye, cell lines susceptible to both TRAIL and FasL were examined. The results show that ocular tissue kills via either ligand, suggesting a compensatory mechanism between TRAIL and FasL. Collectively, these results provide physiological evidence for ocular TRAIL expression, and suggest a role for this molecule in tumor surveillance in an immune privileged site. 相似文献
18.
19.