首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

2.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

3.
Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.  相似文献   

4.
Zhang Y  Wu YX  Hao YB  Dun Y  Yang SP 《Life sciences》2001,68(9):1013-1019
This study investigated the protective effects of ischemic preconditioning on intestinal ischemic injury and the role of endogenous opioid peptides (EOP) in these effects. Ischemia-reperfusion (I/R) induced by 30-min of ischemia and 60-min of reperfusion significantly increased the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and resulted in serious intestinal edema (wet weight/dry weight). The ischemic preconditioning (PC) elicited by three 8-min occlusion periods interspersed with 10-min reperfusion markedly attenuated intestinal injury caused by ischemia-reperfusion. Pretreatment with morphine (300 microg x kg(-1), i.v.) 10-min before ischemia and reperfusion mimicked the protection produced by PC. Naloxone (3 mg x kg(-1), i.v.) abolished the protection of morphine-induced preconditioning and ischemic preconditioning in rat intestine. However, there were no changes between naloxone alone and control groups. Treatment with naloxone before ischemia-reperfusion had no effect on animals compared with the I/R group. In addition, we also measured the content of endogenous opioid peptides (Leu-enkephalin) in the effluent which was collected before and during preconditioning. It was shown that the release of leu-enkephalin was markedly increased during preconditioning. These results suggested that EOP might play an important role in PC in rat small intestine.  相似文献   

5.
《Free radical research》2013,47(10):1210-1217
Abstract

While ischemic preconditioning (IPC) and other cardioprotective interventions have been proposed to protect the heart from ischemia/reperfusion (I/R) injury by inhibiting mitochondrial complex I activity upon reperfusion, the exact mechanism underlying the modulation of complex I activity remains elusive. This study was aimed to test the hypothesis that IPC modulates complex I activity at reperfusion by activating mitochondrial Src tyrosine kinase, and induces cardioprotection against I/R injury. Isolated rat hearts were preconditioned by three cycles of 5-min ischemia and 5-min reperfusion prior to 30-min index ischemia followed by 2 h of reperfusion. Mitochondrial Src phosphorylation (Tyr416) was dramatically decreased during I/R, implying inactivation of Src tyrosine kinase by I/R. IPC increased mitochondrial Src phosphorylation upon reperfusion and this was inhibited by the selective Src tyrosine kinase inhibitor PP2. IPC's anti-infarct effect was inhibited by the selective Src tyrosine kinase inhibitor PP2. Complex I activity was significantly increased upon reperfusion, an effect that was prevented by IPC in a Src tyrosine kinase-dependent manner. In support, Src and phospho-Src were found in complex I. Furthermore, IPC prevented hypoxia/reoxygenation-induced mitochondrial reactive oxygen species (ROS) generation and cellular injury in rat cardiomyocytes, which was revoked by PP2. Finally, IPC reduced LDH release induced by both hypoxia/reoxygenation and simulated ischemia/reperfusion, an effect that was reversed by PP2 and Src siRNA. These data suggest that mitochondrial Src tyrosine kinase accounts for the inhibitory action of IPC on complex I and mitochondrial ROS generation, and thereby plays a role in the cardioprotective effect of IPC.  相似文献   

6.
Protein kinase C (PKC) plays a role in cardioprotection through reduction of intracellular Ca(2+) concentration [Ca(2+)](i) during ischemic preconditioning (IPC). Cardioprotection against ischemic post-conditioning (PC) could be associated with reduced [Ca(2+)](i) through PKC. The calcium-sensing receptor (CaR), G protein-coupled receptor, causes accumulation of inositol phosphate (IP) to increase the release of intracellular Ca(2+). However, this phenomenon can be negatively regulated by PKC through phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that the prevention of cardiomyocyte damage by PC is associated with [Ca(2+)](i) reduction through an interaction of PKC with the CaR. Isolated rat hearts were subjected to 40min of ischemia followed by 90min of reperfusion. The hearts were post-conditioned after the 40min of ischemia by three cycles of 30s of reperfusion and 30s of re-ischemia applied before the 90min of reperfusion. Immunolocalization of PKCepsilon in the cell membrane was observed with IPC and PC, and in hearts exposed to GdCl(3) during PC. CaR was expressed in cardiac cell membrane and interacted with PKC in IPC, PC, and exposure to GdCl(3) during PC groups. On laser confocal microscopy, intracellular Ca(2+) was significantly decreased with IPC, PC, and exposure to GdCl(3) during PC compared with the I/R and PKC inhibitor groups, and cell structure was better preserved and promoted the recovery of cardiac function after reperfusion in the same groups. These results suggested that PKC is involved in cardioprotection against PC through negative feedback of a CaR-mediated reduction in [Ca(2+)](i).  相似文献   

7.
An accumulation of recent evidence suggests that the mechanism in ischemic preconditioning (IPC) may involve the activation of protein kinase C (PKC) regulatory pathway. In this study, we examined whether the content of 1,2-diacylglycerol (1,2-DAG) and ceramide, which are intracellular second messengers regulating PKC activity, change during IPC in isolated perfused rat hearts, and whether the observed change in 1,2-DAG is accompanied with alteration in its fatty acid composition. Hearts subjected to IPC, consisting of 5-min transient global ischemia followed by 5-min reperfusion, presented a significant functional recovery during subsequent 40-min reperfusion following 40-min global ischemia compared with non-preconditioned hearts. An increase in 1,2-DAG content was observed in hearts subjected to 5-min transient ischemia compared with non-ischemic control hearts, however this was not seen in hearts harvested after 5-min reperfusion following 5-min ischemia. While fatty acid composition in 1,2-DAG was virtually unchanged in hearts subjected to 5-min ischemia, saturated 1,2-DAG decreased and monounsaturated/polyunsaturated 1,2-DAG increased in hearts reperfused for 5-min following 5-min ischemia compared with the non-ischemic control hearts. Ceramide mass did not change significantly, suggesting that the contribution of ceramide may be small in IPC. These data are in concert with the hypothesis that 1,2-DAG is a second messenger in IPC and the changes in fatty acid composition of 1,2-DAG may add new insight concerning signal transduction pathway in IPC.  相似文献   

8.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

9.
Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser9 GSK-3β. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3β activity by Akt-mediated Ser9-GSK-3β phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.  相似文献   

10.
Evidence indicates that ischemia/reperfusion (IR) results in endothelial dysfunction and neutrophil adhesion in the post-ischemic myocardium and that ischemic preconditioning (IPC), superoxide dismutase (SOD), and anti-endothelin-1 (ET-1) interventions prevent these effects. We tested the hypothesis that ET-1-induced superoxide (O(2)(-)) generation mediates endothelial injury and neutrophil accumulation in the IR heart, that IPC protects the endothelium and prevents the adhesion by attenuating post-ischemic ET-1, and thus O(2)(-), generation, and that the mitochondrial ATP-dependent potassium channel (mK(ATP)) triggers the IPC-induced protection. Langendorff-perfused guinea-pig hearts were subjected either to 30 min ischemia/35 min reperfusion (IR) or were preconditioned prior to IR with three cycles of either 5 min ischemia/5 min reperfusion or 5 min infusion/5 min wash-out of mK(ATP) opener diazoxide (0.5 microM). Neutrophils were infused to the hearts at 15-25 min of the reperfusion. Coronary flow responses to acetylcholine (ACh) and nitroprusside (SNP) served as measures of endothelium-dependent and -independent vascular function, respectively. Myocardial outflow of ET-1 and O(2)(-), P-selectin expression, neutrophil adhesion and functional recoveries were followed during reperfusion. IR augmented ET-1 and O(2)(-) outflow, P-selectin expression, and neutrophil adhesion, and impaired ACh response. These effects were attenuated or prevented by IPC and diazoxide, and 5-hydroxydecanoate (a selective mK(ATP) blocker) abolished the effects of IPC and diazoxide. SOD (150 U/ml) and tezosentan (5 nM, a mixed ET-1-receptor antagonist) mimicked the effects of IPC, although they had no effect on the ET-1 generation. The preventive effect of IPC, SOD and tezosentan on P-selectin expression preceded their effect on neutrophil adhesion. These data suggest that in guinea-pig heart: (i) ET-1-induced O(2)(-) generation mediates the post-ischemic endothelial dysfunction, P-selectin expression and neutrophil adhesion; (ii) IPC and diazoxide afford protection by attenuating the ET-1, and thus O(2)(-) generation; (iii) the mK(ATP) opening triggers the IPC protection; (iv) endothelial injury promotes post-ischemic neutrophil adhesion, but not vice versa.  相似文献   

11.
Protection of the ex vivo rat heart from ischemia/reperfusion injury can be provided by ischemic preconditioning (IPC). Previous studies revealed that a complex of pannexin-1 with the P2X? receptor forms a channel during IPC that results in the release of cardioprotectants such as adenosine and sphingosine 1-phosphate (S1P) that bind to G-protein-coupled cell surface receptors triggering cardioprotective cell signaling pathways. Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X? receptors (brilliant blue G) are known to block IPC when administered at the time of preconditioning (Vessey et al. J Cardiovasc Pharmacol Ther 15:190, 2010). We now demonstrate that these same antagonists also block the cardioprotective effects of IPC when added after the index ischemia during full reperfusion. Likewise, addition at full reperfusion of binding antagonists to the endogenous cardioprotectants S1P (VPC) or adenosine (8-SPT) reduced the effectiveness of IPC. These data suggest that IPC has a component that requires the release of cardioprotectants via pannexin-1/P2X? channels not only during preconditioning phase but again during the early stages of reperfusion following the index ischemia. It was found that the level of cardioprotectant release required at reperfusion to achieve cardioprotection was lower when hearts had been preconditioned. Further, pharmacologic preconditioning with S1P or adenosine was also blocked at reperfusion by antagonists of the pannexin-1/P2X? channels indicating that pharmacologic preconditioning also requires opening of the channel at full reperfusion. In untreated hearts, key components of the PI3 kinase/Akt signaling pathway were revealed by western analysis to be lost during ischemia. This correlates with an inability to generate phospho-Akt at reperfusion. IPC prevents this loss and thereby primes the cell for response to cardioprotectants released at full reperfusion.  相似文献   

12.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

13.
Activation of protein kinase C (PKC) is a critical intracellular signaling triggered by ischemic preconditioning (IPC), but the precise mechanisms underlying the actions of PKC in IPC-mediated cardioprotection remain unclear. Here, we investigated the role of PKC activation on the antioxidant activity by IPC in rabbit hearts. Isolated rabbit hearts were subjected to 60?min of global ischemia by cold cardioplegic arrest (4?°C) and 60?min of reperfusion (37?°C). IPC was induced by three cycles of 2-min ischemia following 3?min of reperfusion (37?°C) before cardioplegic arrest. IPC resulted in a better recovery of mechanical function, increased tissue reduced glutathione-to-oxidized glutathione ratio (GSH/GSSG), superoxide dismutase and catalase content, and decreased tissue malondialdehyde (MDA) content compared to control hearts subjected to 60?min of cardioplegic ischemia and 60?min of reperfusion. IPC also significantly induced activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the inductions of antioxidant genes heme oxygenase-1 (HO-1) and manganese superoxide dismutase (MnSOD). Injection of phorbol 12-myristate 13 acetate, an activator of PKC, before cardioplegic ischemia induced translocation of PKC-?? and -?? isoforms to membrane fraction, nuclear accumulation of Nrf2, and conferred cardioprotection similar to IPC. Polymyxin B, an inhibitor of PKC, blocked the membrane translocation of PKC-?? and -?? during IPC, inhibited Nrf2 nuclear accumulation, and significantly diminished the IPC-induced cardioprotection when administrated before IPC. These results indicate that the activation of PKC induces the translocation of Nrf2 and the enhancement of endogenous antioxidant defenses in the IPC hearts and suggest that PKC may target Nrf2 to confer cardioprotection.  相似文献   

14.
Pharmacological activation of the prosurvival kinases Akt and ERK-1/2 at reperfusion, after a period of lethal ischemia, protects the heart against ischemia-reperfusion injury. We hypothesized that ischemic preconditioning (IPC) protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion. In isolated perfused Sprague-Dawley rat hearts subjected to 35 min of lethal ischemia, the phosphorylation states of Akt, ERK-1/2, and p70 S6 kinase (p70S6K) were determined after 15 min of reperfusion, and infarct size was measured after 120 min of reperfusion. IPC induced a biphasic response in Akt and ERK-1/2 phosphorylation during the preconditioning and reperfusion phases after the period of lethal ischemia. IPC induced a fourfold increase in Akt, ERK-1/2, and p70S6K phosphorylation at reperfusion and reduced the infarct risk-to-volume ratio (56.9 +/- 5.7 and 20.9 +/- 3.6% for control and IPC, respectively, P < 0.01). Inhibiting the IPC-induced phosphorylation of Akt, ERK-1/2, and p70S6K at reperfusion with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 or the MEK-1/2 inhibitor PD-98059 abrogated IPC-induced protection (46.3 +/- 5.8, 49.2 +/- 4.0, and 20.9 +/- 3.6% for IPC + LY-294002, IPC + PD-98059, and IPC, respectively, P < 0.01), demonstrating that the phosphorylation of these kinases at reperfusion is required for IPC-induced protection. In conclusion, we demonstrate that the reperfusion phase following sustained ischemia plays an essential role in mediating IPC-induced protection. Specifically, we demonstrate that IPC protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion.  相似文献   

15.
Hypothermic perfusion of the heart decreases oxidative phosphorylation and increases NADH. Because O(2) and substrates remain available and respiration (electron transport system, ETS) may become impaired, we examined whether reactive oxygen species (ROS) exist in excess during hypothermic perfusion. A fiberoptic probe was placed on the left ventricular free wall of isolated guinea pig hearts to record intracellular ROS, principally superoxide (O(2)(-).), and an extracellular reactive nitrogen reactant, principally peroxynitrite (ONOO(-)), a product of nitric oxide (NO.) + O(2)(-). Hearts were loaded with dihydroethidium (DHE), which is oxidized by O(2)(-). to ethidium, or were perfused with l-tyrosine, which is oxidized by ONOO(-) to dityrosine (diTyr). Shifts in fluorescence were measured online; diTyr fluorescence was also measured in the coronary effluent. To validate our methods and to examine the source and identity of ROS during cold perfusion, we examined the effects of a superoxide dismutase mimetic Mn(III) tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME), and several agents that impair electron flux through the ETS: menadione, sodium azide (NaN(3)), and 2,3-butanedione monoxime (BDM). Drugs were given before or during cold perfusion. ROS measured by DHE was inversely proportional to the temperature between 37 degrees C and 3 degrees C. We found that perfusion at 17 degrees C increased DHE threefold versus perfusion at 37 degrees C; this was reversed by MnTBAP, but not by l-NAME or BDM, and was markedly augmented by menadione and NaN(3). Perfusion at 17 degrees C also increased myocardial and effluent diTyr (ONOO(-)) by twofold. l-NAME, MnTBAP, or BDM perfused at 37 degrees C before cooling or during 17 degrees C perfusion abrogated, whereas menadione and NaN(3) again enhanced the cold-induced increase in ROS. Our results suggest that hypothermia moderately enhances O(2)(-). generation by mitochondria, whereas O(2)(-). dismutation is markedly slowed. Also, the increase in O(2)(-). during hypothermia reacts with available NO. to produce ONOO(-), and drug-induced O(2)(-). dismutation eliminates the hypothermia-induced increase in O(2)(-).  相似文献   

16.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。  相似文献   

17.
Reperfusion of the ischemic myocardium leads to a burst of reactive O(2) species (ROS), which is a primary determinant of postischemic myocardial dysfunction. We tested the hypothesis that early O(2) delivery and the cellular redox state modulate the initial myocardial ROS production at reperfusion. Isolated buffer-perfused rat hearts were loaded with the fluorophores dihydrofluorescein or Amplex red to detect intracellular and extracellular ROS formation using surface fluorometry at the left ventricular wall. Hearts were made globally ischemic for 20 min and then reperfused with either 95% or 20% O(2)-saturated perfusate. The same protocol was repeated in hearts loaded with dihydrofluorescein and perfused with either 20 or 5 mM glucose-buffered solution to determine relative changes in NADH and FAD. Myocardial O(2) delivery during the first 5 min of reperfusion was 84.7 +/- 4.2 ml O(2)/min with 20% O(2)-saturated buffer and 354.4 +/- 22.8 ml O(2)/min with 95% O(2) (n = 8/group, P < 0.001). The fluorescein signal (intracellular ROS) was significantly increased in hearts reperfused with 95% O(2) compared with 20% O(2). However, the resorufin signal (extracellular ROS) was significantly increased with 20% O(2) compared with 95% O(2) during reperfusion. Perfusion of hearts with 20 mM glucose reduced the (.)NADH during ischemia (P < 0.001) and the (.)ROS at reperfusion (P < 0.001) compared with 5.5 mM-perfused glucose hearts. In conclusion, initial O(2) delivery to the ischemic myocardium modulates a compartment-specific ROS response at reperfusion such that high O(2) delivery promotes intracellular ROS and low O(2) delivery promotes extracellular ROS. The redox state that develops during ischemia appears to be an important precursor for reperfusion ROS production.  相似文献   

18.
NADH increases during ischemia because O(2) shortage limits NADH oxidation at the electron transport chain. Ischemic (IPC) and anesthetic preconditioning (APC) attenuate cardiac reperfusion injury. We examined whether IPC and APC similarly alter NADH, i.e., mitochondrial metabolism. NADH fluorescence was measured at the left ventricular wall of 40 Langendorff-prepared guinea pig hearts. IPC was achieved by two 5-min periods of ischemia and APC by exposure to 0.5 or 1.3 mM sevoflurane for 15 min, each ending 30 min before 30 min of global ischemia. During ischemia, NADH initially increased in nonpreconditioned control hearts and then gradually declined below baseline levels. This increase in NADH was lower after APC but not after IPC. The subsequent decline was slower after IPC and APC. On reperfusion, NADH was less decreased after IPC or APC, mechanical and metabolic functions were improved, and infarct size was lower compared with controls. Our results indicate that IPC and APC cause distinctive changes in mitochondrial metabolism during ischemia and thus lead to improved function and tissue viability on reperfusion.  相似文献   

19.
The possible relationships between intracellular Na(+) (Na(i)(+)), bioenergetic status and intracellular pH (pH(i)) in the mechanism for ischemic preconditioning were studied using (23)Na and (31)P magnetic resonance spectroscopy in isolated Langendorff perfused rat heart. The ischemic preconditioning (three 5-min ischemic episodes followed by two 5-min and one 10-min period of reperfusion) prior to prolonged ischemia (20 min stop-flow) resulted in a decrease in ischemic acidosis and faster and complete recovery of cardiac function (ventricular developed pressure and heart rate) after 30 min of reperfusion. The response of Na(i) during ischemia in the preconditioned hearts was characterized by an increase in Na(i)(+) at the end of preconditioning and an accelerated decrease during the first few minutes of reperfusion. During post-ischemic reperfusion, bioenergetic parameters (PCr/P(i) and betaATP/P(i) ratios) were partly recovered without any significant difference between control and preconditioned hearts. The reduced acidosis during prolonged ischemia and the accelerated decrease in Na(i)(+) during reperfusion in the preconditioned hearts suggest activation of Na(+)/H(+) exchanger and other ion transport systems during preconditioning, which may protect the heart from intracellular acidosis during prolonged ischemia, and result in better recovery of mechanical function (LVDP and heart rate) during post-ischemic reperfusion.  相似文献   

20.
We compared the protective effects of ischemic preconditioning (IPC) and the Na(+)/H(+) exchanger-1 (NHE-1) inhibitor cariporide in isolated rat hearts subjected to global ischemia (45 or 90 min) and 30-min reperfusion and determined the protective effects of cariporide under IPC blockade with the mitochondrial ATP-sensitive K(+) channel blocker 5-hydroxydecanoate (5-HD). With 45-min ischemia, both IPC and cariporide equally increased maximum recovery of left ventricular developed pressure twofold (P < 0.05), although recovery was significantly greater with cariporide for the first 15 min of reperfusion. 5-HD almost completely blocked the protective effects of IPC on recovery but had no influence on the salutary effects of cariporide. With 90-min ischemic control, recovery was only 3% of preischemia and was unaffected by IPC, although cariporide increased recovery to approximately 30% (P < 0.05). This was associated with a 37% preservation of viable cardiac cells, whereas no structurally intact cells were found in either IPC or control hearts. Our study shows that NHE-1 inhibition is a more effective cardioprotective strategy than IPC in this model, possibly because of enhanced myocyte salvage, and because protection by NHE-1 inhibition is completely unaffected by IPC blockade with 5-HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号