首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Qin GY  Zhu ZY 《Biometrics》2009,65(1):52-59
Summary .  In this article, we study the robust estimation of both mean and variance components in generalized partial linear mixed models based on the construction of robustified likelihood function. Under some regularity conditions, the asymptotic properties of the proposed robust estimators are shown. Some simulations are carried out to investigate the performance of the proposed robust estimators. Just as expected, the proposed robust estimators perform better than those resulting from robust estimating equations involving conditional expectation like Sinha (2004, Journal of the American Statistical Association 99, 451–460) and Qin and Zhu (2007, Journal of Multivariate Analysis 98, 1658–1683). In the end, the proposed robust method is illustrated by the analysis of a real data set.  相似文献   

2.
3.
A general maximum likelihood estimation program.   总被引:13,自引:11,他引:2       下载免费PDF全文
  相似文献   

4.
5.
Huggins R 《Biometrics》2000,56(2):537-545
In the study of longitudinal twin and family data, interest is often in the covariance structure of the data and the decomposition of this covariance structure into genetic and environmental components rather than in estimating the mean function. Various parametric models for covariance structures have been proposed but, e.g., in studies of children where growth spurts occur at various ages, it is difficult to a priori determine an appropriate parametric model for the covariance structure. In particular, there is a general lack of the visualization procedures, such as lowess, that are invaluable in the initial stages of constructing a parametric model for a mean function. Here we use kernel smoothing to modify a cross-sectional approach based on the sample covariance matrices to obtain smoothed estimates of the genetic and environmental variances and correlations for longitudinal twin data. The methods are proposed to be exploratory as an aid to parametric modeling rather than inferential, although approximate asymptotic standard errors are derived in the Appendix.  相似文献   

6.
Aitkin M 《Biometrics》1999,55(1):117-128
This paper describes an EM algorithm for nonparametric maximum likelihood (ML) estimation in generalized linear models with variance component structure. The algorithm provides an alternative analysis to approximate MQL and PQL analyses (McGilchrist and Aisbett, 1991, Biometrical Journal 33, 131-141; Breslow and Clayton, 1993; Journal of the American Statistical Association 88, 9-25; McGilchrist, 1994, Journal of the Royal Statistical Society, Series B 56, 61-69; Goldstein, 1995, Multilevel Statistical Models) and to GEE analyses (Liang and Zeger, 1986, Biometrika 73, 13-22). The algorithm, first given by Hinde and Wood (1987, in Longitudinal Data Analysis, 110-126), is a generalization of that for random effect models for overdispersion in generalized linear models, described in Aitkin (1996, Statistics and Computing 6, 251-262). The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully nonparametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters can be sensitive to the specification of a parametric form for the mixing distribution. The nonparametric analysis can be extended straightforwardly to general random parameter models, with full NPML estimation of the joint distribution of the random parameters. This can produce substantial computational saving compared with full numerical integration over a specified parametric distribution for the random parameters. A simple method is described for obtaining correct standard errors for parameter estimates when using the EM algorithm. Several examples are discussed involving simple variance component and longitudinal models, and small-area estimation.  相似文献   

7.
8.
Phenotypes in an ABO-like system of a number of genetically-independent persons from a number of populations are supposed to be observed. The program which is written in FORTRAN calculates maximum likelihood estimates of gene frequencies and their standard errors in each population and in the populations taken together. Furthermore the program calculates expected values and likelihood ratio and goodness of fit chi-square tests of Hardy-Weinberg equilibrium. If several subpopulations are pooled together a likelihood ratio test of homogeneity is performed.  相似文献   

9.
There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal accurately with missing data and genotyping errors. Here we present an extension of the previous methods that makes the Bayesian method applicable to large data sets. We present an extensive simulation study examining the statistical properties of the method and comparing it with the likelihood method implemented in Mapmaker. We show that the Maximum A Posteriori (MAP) estimator of the genetic distances, corresponding to the maximum likelihood estimator, performs better than estimators based on the posterior expectation. We also show that while the performance is similar between Mapmaker and the MCMC-based method in the absence of genotyping errors, the MCMC-based method has a distinct advantage in the presence of genotyping errors. A similar advantage of the Bayesian method was not observed for missing data. We also re-analyse a recently published set of data from the eggplant and show that the use of the MCMC-based method leads to smaller estimates of genetic distances.  相似文献   

10.
The Cox proportional hazards model or its discrete time analogue, the logistic failure time model, posit highly restrictive parametric models and attempt to estimate parameters which are specific to the model proposed. These methods are typically implemented when assessing effect modification in survival analyses despite their flaws. The targeted maximum likelihood estimation (TMLE) methodology is more robust than the methods typically implemented and allows practitioners to estimate parameters that directly answer the question of interest. TMLE will be used in this paper to estimate two newly proposed parameters of interest that quantify effect modification in the time to event setting. These methods are then applied to the Tshepo study to assess if either gender or baseline CD4 level modify the effect of two cART therapies of interest, efavirenz (EFV) and nevirapine (NVP), on the progression of HIV. The results show that women tend to have more favorable outcomes using EFV while males tend to have more favorable outcomes with NVP. Furthermore, EFV tends to be favorable compared to NVP for individuals at high CD4 levels.  相似文献   

11.
12.
Summary Methods of classical segregation analysis were applied to a sample of 129 sibships with one or more individuals affected by neurofibromatosis-1 (NF-1). The sample consists only of subjects with NF-1; all the probands had been referred for genetic counselling because of café-au-lait spots, and a diagnostic protocol was invariably applied. No deviation from the segregation ratio expected for a fully penetrant Mendelian dominant gene was observed. A maximum likelihood estimate of the proportion of sporadic cases was obtained, and the mutation rate was estimated to be 6.5×10-5 gametes per generation (95% CI 5.0–8.1).  相似文献   

13.
We present a Markov chain Monte Carlo coalescent genealogy sampler, LAMARC 2.0, which estimates population genetic parameters from genetic data. LAMARC can co-estimate subpopulation Theta = 4N(e)mu, immigration rates, subpopulation exponential growth rates and overall recombination rate, or a user-specified subset of these parameters. It can perform either maximum-likelihood or Bayesian analysis, and accomodates nucleotide sequence, SNP, microsatellite or elecrophoretic data, with resolved or unresolved haplotypes. It is available as portable source code and executables for all three major platforms. AVAILABILITY: LAMARC 2.0 is freely available at http://evolution.gs.washington.edu/lamarc  相似文献   

14.
It is shown that maximum likelihood estimation of variance components from twin data can be parameterized in the framework of linear mixed models. Standard statistical packages can be used to analyze univariate or multivariate data for simple models such as the ACE and CE models. Furthermore, specialized variance component estimation software that can handle pedigree data and user-defined covariance structures can be used to analyze multivariate data for simple and complex models, including those where dominance and/or QTL effects are fitted. The linear mixed model framework is particularly useful for analyzing multiple traits in extended (twin) families with a large number of random effects.  相似文献   

15.
16.
17.

Background  

The covarion hypothesis of molecular evolution holds that selective pressures on a given amino acid or nucleotide site are dependent on the identity of other sites in the molecule that change throughout time, resulting in changes of evolutionary rates of sites along the branches of a phylogenetic tree. At the sequence level, covarion-like evolution at a site manifests as conservation of nucleotide or amino acid states among some homologs where the states are not conserved in other homologs (or groups of homologs). Covarion-like evolution has been shown to relate to changes in functions at sites in different clades, and, if ignored, can adversely affect the accuracy of phylogenetic inference.  相似文献   

18.
19.
ANDERSON  J. A.; BLAIR  V. 《Biometrika》1982,69(1):123-136
  相似文献   

20.
Researchers in observational survival analysis are interested in not only estimating survival curve nonparametrically but also having statistical inference for the parameter. We consider right-censored failure time data where we observe n independent and identically distributed observations of a vector random variable consisting of baseline covariates, a binary treatment at baseline, a survival time subject to right censoring, and the censoring indicator. We assume the baseline covariates are allowed to affect the treatment and censoring so that an estimator that ignores covariate information would be inconsistent. The goal is to use these data to estimate the counterfactual average survival curve of the population if all subjects are assigned the same treatment at baseline. Existing observational survival analysis methods do not result in monotone survival curve estimators, which is undesirable and may lose efficiency by not constraining the shape of the estimator using the prior knowledge of the estimand. In this paper, we present a one-step Targeted Maximum Likelihood Estimator (TMLE) for estimating the counterfactual average survival curve. We show that this new TMLE can be executed via recursion in small local updates. We demonstrate the finite sample performance of this one-step TMLE in simulations and an application to a monoclonal gammopathy data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号