首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SOS mutagenesis in Escherichia coli requires the participation of a specialized system involving the activated form of UmuD (UmuD'), UmuC, RecA, and DNA polymerase III proteins. We have used a set of monocysteine derivatives of UmuD (M. H. Lee, T. Ohta, and G. C. Walker, J. Bacteriol. 176:4825-4837, 1994) and the cysteine-specific photoactive cross-linker p-azidoiodoacetanilide (AIA) to study not only the interactions of intact UmuD in the homodimer but also the interactions of UmuD with activated RecA. The reactivities of the individual UmuD monocysteine derivatives with AIA were similar to their reactivities with iodoacetate. The relative efficiencies of cross-linking of the AIA-modified monocysteine UmuD derivatives in the homodimer form are also consistent with our previous conclusions concerning the relative closeness of various UmuD residues to the dimer interface. With respect to the UmuD-RecA interface, the AIA-modified VC34 and SC81 monocysteine derivatives cross-linked most efficiently with RecA, indicating that positions 34 and 81 of UmuD are closer to the RecA interface than the other positions we tested. The AIA-modified SC57, SC67, and SC112 monocysteine derivatives cross-linked moderately efficiently with RecA. Neither C24, the wild-type UmuD that has a cysteine located at the Cys-24-Gly-25 cleavage site, nor SC60, the UmuD monocysteine derivative with a cysteine substitution at the position of the putative active-site residue, was able to cross-link with RecA, suggesting that RecA need not directly interact with residues involved in the cleavage reaction. SC19, located in the N-terminal fragment of UmuD that is cleaved, and LC44 also did not cross-link efficiently with RecA.  相似文献   

2.
A Guzzo  M H Lee  K Oda    G C Walker 《Journal of bacteriology》1996,178(24):7295-7303
On the basis of characterizations of a set of UmuD monocysteine derivatives, we had suggested that positions 24, 34, and 44 are closer to the intact UmuD homodimer interface than other positions tested (M. H. Lee, T. Ohta, and G. C. Walker, J. Bacteriol. 176:4825-4837, 1994). Because this region of UmuD also appeared to be important for interactions with RecA, we followed up on our previous study by constructing a second set of monocysteine UmuD derivatives with single cysteine substitutions at positions 30 to 42. We found that like the VC34 mutant, UmuD derivatives with monocysteine substitutions at positions 32 and 35 showed deficiencies in in vivo and in vitro RecA-mediated cleavage as well as in UV mutagenesis, suggesting that the position 32 to 35 region may be important for RecA-mediated cleavage of UmuD. Interestingly, UmuD with monocysteine substitutions at residues 33 and 40 showed a reduction in UV mutagenesis while retaining the ability to be cleaved by RecA in vivo, suggesting a deficiency in the subsequent role of the UmuD' derivatives in mutagenesis. All of the UmuD monocysteine derivatives in the position 30 to 42 series purified indistinguishably from the wild-type protein. The observations that purified proteins of the UmuD derivatives RC37 and IC38 could be disulfide cross-linked quantitatively upon addition of iodine and yet were poorly modified with iodoacetate led us to suggest that the pairs of residues at positions 37 and 38 are extremely close to the UmuD2 homodimer interface. These observations indicate that the structure of the UmuD2 homodimer in solution is very different from the crystal structure of the UmuD'2 homodimer reported by Peat et al. (T. S. Peat, E. G. Frank, J. P. McDonald, A. S. Levine, R. Woodgate, and W. A. Hendrickson, Nature [London] 380:727-730, 1996).  相似文献   

3.
Inhibition of RecA-mediated cleavage in covalent dimers of UmuD.   总被引:2,自引:2,他引:0       下载免费PDF全文
M H Lee  A Guzzo    G C Walker 《Journal of bacteriology》1996,178(24):7304-7307
Disulfide-cross-linked UmuD2 derivatives were cleaved poorly upon incubation with activated RecA. Reducing the disulfide bonds prior to incubating the derivatives with RecA dramatically increased their extent of cleavage. These observations suggest that the UmuD monomer is a better substrate for the RecA-mediated cleavage reaction than the dimer.  相似文献   

4.
The products of the umuD and umuC genes are required for most uv and chemical mutagenesis in Escherichia coli. The genes are organized in an operon that is repressed by LexA and regulated as part of the SOS response. The umuD protein shares homology with the carboxyl-terminal domain of LexA. Genetic evidence now indicates that RecA-mediated cleavage activates UmuD for its role in mutagenesis. The COOH-terminal fragment of UmuD is both necessary and sufficient for this role. Similarities of UmuD to gene 45 protein of bacteriophage T4 and of UmuC to gene 44 protein and gene 62 protein suggest possible roles for UmuD and UmuC in mutagenesis that are supported by preliminary evidence.  相似文献   

5.
Summary The products of the chromosomally encoded umuDC genes are directly required for mutagenesis in Escherichia coli. Strains with either umuD or umuC mutations are rendered phenotypically non-mutable. To ascertain the molecular basis of this non-mutability, we determined the DNA sequence alterations of seven chromosomal umuDC mutants. Six mutants (umuD1, umuD44, umuD77, umuC36, umuC25, and umuC104) were found to be single base-pair substitutions that resulted in missense mutations. The Tn5 transposon insertion mutation (umuC122) resulted in a missense mutation followed immediately by a termination codon, producing a truncated UmuC protein lacking 102 carboxyl-terminal amino acids. All of the mutations were found to reside in regions of the UmuD and UmuC proteins that share high homology with analogous proteins. Chemiluminescent immunoassays revealed that the umuD1, umuD44, and umuD77 mutations all resulted in a non-cleavable UmuD protein. Because UmuD cleavage is a prerequisite for mutagenesis, the lack of UmuD processing appears to be the molecular basis for the non-mutable phenotype in these strains. These studies re-emphasize the critical nature of the RecA-mediated cleavage of UmuD for inducible mutagenesis and provide insights into the functional domains of the UmuC protein.  相似文献   

6.
An early event in the induction of the SOS system of Escherichia coli is RecA-mediated cleavage of the LexA repressor. RecA acts indirectly as a coprotease to stimulate repressor self-cleavage, presumably by forming a complex with LexA. How complex formation leads to cleavage is not known. As an approach to this question, it would be desirable to identify the protein-protein interaction sites on each protein. It was previously proposed that LexA and other cleavable substrates, such as phage lambda CI repressor and E. coli UmuD, bind to a cleft located between two RecA monomers in the crystal structure. To test this model, and to map the interface between RecA and its substrates, we carried out alanine-scanning mutagenesis of RecA. Twenty double mutations were made, and cells carrying them were characterized for RecA-dependent repair functions and for coprotease activity towards LexA, lambda CI, and UmuD. One mutation in the cleft region had partial defects in cleavage of CI and (as expected from previous data) of UmuD. Two mutations in the cleft region conferred constitutive cleavage towards CI but not towards LexA or UmuD. By contrast, no mutations in the cleft region or elsewhere in RecA were found to specifically impair the cleavage of LexA. Our data are consistent with binding of CI and UmuD to the cleft between two RecA monomers but do not provide support for the model in which LexA binds in this cleft.  相似文献   

7.
Inducible mutagenesis in Escherichia coli requires the direct action of the chromosomally encoded UmuDC proteins or functional homologs found on certain naturally occurring plasmids. Although structurally similar, the five umu-like operons that have been characterized at the molecular level vary in their ability to enhance cellular and phage mutagenesis; of these operons, the mucAB genes from the N-group plasmid pKM101 are the most efficient at promoting mutagenesis. During the mutagenic process, UmuD is posttranslationally processed to an active form, UmuD'. To explain the more potent mutagenic efficiency of mucAB compared with that of umuDC it has been suggested that unlike UmuD, intact MucA is functional for mutagenesis. To examine this possibility, we have overproduced and purified the MucA protein. Although functionally similar to UmuD, MucA was cleaved much more rapidly both in vitro and in vivo than UmuD. In vivo, restoration of mutagenesis functions to normally nonmutable recA430, recA433, recA435, or recA730 delta(umuDC)595::cat strains by either MucA+ or mutant MucA protein correlated with the appearance of the cleavage product, MucA'. These results suggest that most of the differences in mutagenic phenotype exhibited by MucAB and UmuDC correlate with the efficiency of posttranslational processing of MucA and UmuD rather than an inherent activity of the unprocessed proteins.  相似文献   

8.
9.
The umuDC operon of Escherichia coli, a member of the SOS regulon, is required for SOS mutagenesis. Following the posttranslational processing of UmuD to UmuD' by RecA-mediated cleavage, UmuD' acts in concert with UmuC, RecA, and DNA polymerase III to facilitate the process of translesion synthesis, which results in the introduction of mutations. Constitutive expression of the umuDC operon causes an inhibition of growth at 30 degrees C (cold sensitivity). The umuDC-dependent physiological phenomenon manifested as cold-sensitive growth is shown to differ from SOS mutagenesis in two respects. Intact UmuD, the form inactive in SOS mutagenesis, confers a significantly higher degree of cold sensitivity in combination with UmUC than does UmuD'. In addition, umuDC-mediated cold sensitivity, unlike SOS mutagenesis, does not require recA function. Since the RecA protein mediates the autodigestion of UnmD to UmuD', this finding supports the conclusion that intact UmuD is capable of conferring cold sensitivity in the presence of UmuC. The degree of inhibition of growth at 30 degrees C correlates with the levels of UmuD and UmuC, which are the only two SOS-regulated proteins required to observe cold sensitivity. Analysis of the cellular morphology of strains that exhibit cold sensitivity for growth led to the finding that constitutive expression of the umuDC operon causes a novel form of sulA- and sfiC-independent filamentation at 30 degrees C. This filamentation is observed in a strain constitutively expressing the single, chromosomal copy of umuDC and can be suppressed by overexpression of the ftsQAZ operon.  相似文献   

10.
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD'. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD' protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD'-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD' functions in vivo as well as examined HumD's physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive DeltaumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD', HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD'-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.  相似文献   

11.
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.  相似文献   

12.
The LexA repressor of Escherichia coli represses a set of genes that are expressed in the response to DNA damage. After inducing treatments, the repressor is inactivated in vivo by a specific cleavage reaction which requires an activated form of RecA protein. In vitro, specific cleavage requires activated RecA at neutral pH and proceeds spontaneously at alkaline pH. We have isolated and characterized a set of lexA mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Forty-six independent mutants, generated by hydroxylamine and formic acid mutagenesis, were isolated by a screen involving the use of operon fusions. DNA sequence analysis identified 20 different mutations. In a recA mutant, all but four of the mutant proteins functioned as repressor as well as wild-type LexA. In a strain carrying a constitutively active recA allele, recA730, all the mutant proteins repressed a sulA::lacZ fusion more efficiently than the wild-type repressor, presumably because they were cleaved poorly or not at all by the activated RecA protein. These 20 mutations resulted in amino acid substitutions in 12 positions, most of which are conserved between LexA and four other cleavable proteins. All the mutations were located in the hinge region or C-terminal domain of the protein, portions of LexA previously implicated in the specific cleavage reactions. Furthermore, these mutations were clustered in three regions, around the cleavage site (Ala-84-Gly-85) and in blocks of conserved amino acids around two residues, Ser-119 and Lys-156, which are believed essential for the cleavage reactions. These three regions of the protein thus appear to play important roles in the cleavage reaction.  相似文献   

13.
Summary Most of the inducible mutagenesis observed in Escherichia coli after treatment with many DNA damaging agents is dependent upon the products of the umuD,C operon. RecA-mediated proteolytic processing of UmuD yields a carboxyl-terminal fragment (UmuD) that is active for mutagenesis. Processing of UmuD is therefore a critical step in the fixation of mutations. In this paper we have analyzed the requirements for UmuD processing in vivo. Standard immuno-detection assays, coupled with a sensitive chemiluminescence detection assay, have been utilized to probe levels of chromosomally encoded Umu proteins from whole-cell E. coli extracts. We found that the derepression of additional SOS gene products, other than RecA, was not required for UmuD processing. Moreover, efficient cleavage of UmuD was observed only in the presence of elevated levels of activated RecA, suggesting that efficient processing would occur only under conditions of severe DNA damage. Detection of chromosomally encoded Umu proteins has allowed us, for the first time, to measure directly the cellular steady-state levels of these proteins under various SOS inducing conditions. UmuD was present at 180 copies per uninduced cell and was measured at 2400 copies per cell in strains that lacked a functional repressor. Induced levels of UmuC were approximately 12-fold lower than UmuD with 200 molecules per cell. These levels of cellular UmuC protein suggest that it functions through specific protein-DNA or protein-protein interactions, possibly as a lesion recognition protein or by interacting with DNA polymerase III.  相似文献   

14.
Under physiological conditions, lambda repressor can be inactivated in vivo or in vitro by RecA-mediated cleavage of the polypeptide chain. The repressor protein is thought to cleave itself, with RecA acting to stimulate autodigestion. ind- repressor mutants are resistant to RecA-mediated inactivation in vivo. In this paper, we report the purification of 15 ind- repressor proteins and the behaviors of these proteins in the RecA-mediated and autodigestion cleavage reactions. None of these proteins undergoes substantial RecA-dependent cleavage. However, eight mutant proteins autodigest at the same rate as wild-type repressor, six mutants do not autodigest or autodigest slower, and one mutant autodigests faster than wild-type. We discuss these results with respect to repressor structure and RecA-binding, and suggest possible roles for the RecA protein in the cleavage reaction.  相似文献   

15.
The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli, a process that results from a translesion synthesis mechanism. The UmuD protein is activated for its role in mutagenesis by a RecA-facilitated autodigestion that removes the N-terminal 24 amino acids. A previous genetic screen for nonmutable umuD mutants had resulted in the isolation of a set of missense mutants that produced UmuD proteins that were deficient in RecA-mediated cleavage (J. R. Battista, T. Ohta, T. Nohmi, W. Sun, and G. C. Walker, Proc. Natl. Acad. Sci. USA 87:7190–7194, 1990). To identify elements of the UmuD′ protein necessary for its role in translesion synthesis, we began with umuD′, a modified form of the umuD gene that directly encodes the UmuD′ protein, and obtained missense umuD′ mutants deficient in UV and methyl methanesulfonate mutagenesis. The D39G, L40R, and T51I mutations affect residues located at the UmuD′2 homodimer interface and interfere with homodimer formation in vivo. The D75A mutation affects a highly conserved residue located at one end of the central strand in a three-stranded β-sheet and appears to interfere with UmuD′2 homodimer formation indirectly by affecting the structure of the UmuD′ monomer. When expressed from a multicopy plasmid, the L40R umuD′ mutant gene exhibited a dominant negative effect on a chromosomal umuD+ gene with respect to UV mutagenesis, suggesting that the mutation has an effect on UmuD′ function that goes beyond its impairment of homodimer formation. The G129D mutation affects a highly conserved residue that lies at the end of the long C-terminal β-strand and results in a mutant UmuD′ protein that exhibits a strongly dominant negative effect on UV mutagenesis in a umuD+ strain. The A30V and E35K mutations alter residues in the N-terminal arms of the UmuD′2 homodimer, which are mobile in solution.  相似文献   

16.
RecA-mediated cleavage of the bacteriophage lambda repressor results in inactivation of the protein and leads to induction of the lambda prophage. Here, we report the identification of three mutations in lambda repressor that significantly increase the rate of RecA-mediated cleavage. These mutations were isolated as intragenic second-site suppressors of a mutation (ind-) which prevents cleavage. Purified repressor proteins that contain both the ind- mutation and one of the second-site mutations undergo cleavage at near wild-type rates. Purified repressors that contain the second-site mutations in otherwise wild-type backgrounds undergo RecA-mediated cleavage at significantly faster rates than wild-type, and form dimers more poorly than the wild-type protein. In related experiments, we found that other repressor mutants that dimerize poorly are also better substrates for RecA-mediated cleavage. Conversely, we show that a covalent disulfide-bonded repressor dimer is resistant to cleavage. These results support a model in which repressor monomers are the only substrate in the cleavage reaction.  相似文献   

17.
The expression of Escherichia coli umuD gene products is upregulated as part of the SOS response to DNA damage. UmuD is initially produced as a 139-amino-acid protein, which subsequently cleaves off its N-terminal 24 amino acids in a reaction dependent on RecA/single-stranded DNA, giving UmuD′. The two forms of the umuD gene products play different roles in the cell. UmuD is implicated in a primitive DNA damage checkpoint and prevents DNA polymerase IV-dependent − 1 frameshift mutagenesis, while the cleaved form facilitates UmuC-dependent mutagenesis via formation of DNA polymerase V (UmuD′2C). Thus, the cleavage of UmuD is a crucial switch that regulates replication and mutagenesis via numerous protein-protein interactions. A UmuD variant, UmuD3A, which is noncleavable but is a partial biological mimic of the cleaved form UmuD′, has been identified. We used hydrogen-deuterium exchange mass spectrometry (HXMS) to probe the conformations of UmuD, UmuD′, and UmuD3A. In HXMS experiments, backbone amide hydrogens that are solvent accessible or not involved in hydrogen bonding become labeled with deuterium over time. Our HXMS results reveal that the N-terminal arm of UmuD, which is truncated in the cleaved form UmuD′, is dynamic. Residues that are likely to contact the N-terminal arm show more deuterium exchange in UmuD′ and UmuD3A than in UmuD. These observations suggest that noncleavable UmuD3A mimics the cleaved form UmuD′ because, in both cases, the arms are relatively unbound from the globular domain. Gas-phase hydrogen exchange experiments, which specifically probe the exchange of side-chain hydrogens and are carried out on shorter timescales than solution experiments, show that UmuD′ incorporates more deuterium than either UmuD or UmuD3A. This work indicates that these three forms of the UmuD gene products are highly flexible, which is of critical importance for their many protein interactions.  相似文献   

18.
One of the components of the RecA-LexA-controlled SOS response in Escherichia coli cells is an inducible error-prone DNA replication pathway that results in a substantial increase in the mutation rate. It is believed that error-prone DNA synthesis is performed by a multiprotein complex that is formed by UmuC, UmuD', RecA, and probably DNA polymerase III holoenzyme. It is postulated that the formation of such a complex requires specific interactions between these proteins. We have analyzed the specific protein-protein interactions between UmuC, UmuD, and UmuD' fusion proteins, using a Saccharomyces cerevisiae two-hybrid system. In agreement with previous in vitro data, we have shown that UmuD and UmuD' are able to form both homodimers (UmuD-UmuD and UmuD'-UmuD') and a heterodimer (UmuD-UmuD'). Our data show that UmuC fusion protein is capable of interacting exclusively with UmuD' and not with UmuD. Thus, posttranslational processing of UmuD into UmuD' is a critical step in SOS mutagenesis, enabling only the latter protein to interact with UmuC. Our data seem to indicate that the integrity of the entire UmuC sequence is essential for UmuC-UmuD' heterotypic interaction. Finally, in our studies, we used three different UmuC mutant proteins: UmuC25, UmuC36, and UmuC104. We have found that UmuC25 and UmuC36 are not capable of associating with UmuD'. In contrast, UmuC104 protein interacts with UmuD' protein with an efficiency identical to that of the wild-type protein. We postulate that UmuC104 protein might be defective in interaction with another, unknown protein essential for the SOS mutagenesis pathway.  相似文献   

19.
Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins   总被引:17,自引:0,他引:17  
The LexA repressor of Escherichia coli undergoes a specific cleavage reaction in vivo, an event that leads to derepression of the SOS regulon and requires an activated form of RecA protein. In vitro, cleavage requires RecA at neutral pH; at alkaline pH, a spontaneous cleavage reaction termed autodigestion takes place. Both autodigestion and RecA-mediated cleavage cut the same bond, and are observed for the same set of substrates, suggesting that RecA acts indirectly to stimulate LexA self-cleavage at neutral pH, perhaps binding to LexA and acting as an allosteric effector. We previously isolated a set of lexA(Ind-) mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Here, we describe the in vitro cleavage of purified mutant proteins. All of those tested were deficient in both cleavage reactions. Although most of them were equally deficient in both reactions, some were more deficient in one reaction than the other. Several mutant proteins appeared to have defects in binding to RecA. Autodigestion of all but one of the poorly cleavable mutant proteins reached a maximum rate at pH around 10, as does wild-type LexA. The exception was KR156, which changed Lys156, a residue previously implicated in the mechanism of cleavage, to Arg, another basic residue: for this protein, the rate of autodigestion increased with pH at values above 11. RecA-mediated cleavage of KR156 was 1% the wild-type rate at pH 7, but increased with increasing pH to a plateau at pH 9.5, where the rate was 40% the wild-type rate. In contrast, an essentially constant rate was observed for wild-type LexA over the pH range 6 to 11. We suggest, first, that deprotonation of Arg156 and, by inference, Lys156 in the wild-type protein, is required for both autodigestion and RecA-mediated cleavage: and second, that RecA acts to reduce the pKa of Lys156, allowing efficient cleavage of wild-type repressor under physiological conditions.  相似文献   

20.
The GroE proteins of Escherichia coli are heat shock proteins which have also been shown to be molecular chaperone proteins. Our previous work has shown that the GroE proteins of E. coli are required for UV mutagenesis. This process requires the umuDC genes which are regulated by the SOS regulon. As part of the UV mutagenesis pathway, the product of the umuD gene, UmuD, is posttranslationally cleaved to yield the active form, UmuD'. In order to investigate what role the groE gene products play in UV mutagenesis, we measured UV mutagenesis in groE+ and groE strains which were expressing either the umuDC or umuD'C genes. We found that expression of umuD' instead of umuD will suppress the nonmutability conferred by the groE mutations. However, cleavage of UmuD to UmuD' is unaffected by mutations at the groE locus. Instead we found that the presence of UmuD' increased the stability of UmuC in groE strains. In addition, we obtained evidence which indicates that GroEL interacts directly with UmuC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号