首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Spc1 in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spc1 is activated by a MAPK kinase homologue, Wis1, and negatively regulated by Pyp1 and Pyp2 tyrosine phosphatases. Mutations in the spc1+ and wis1+ genes cause a G2 cell cycle delay that is exacerbated during stress. Herein, we describe two upstream regulators of the Wis1-Spc1 cascade. wik1+ (Wis1 kinase) was identified from its homology to budding yeast SSK2, which encodes a MAPKK kinase that regulates the HOG1 osmosensing pathway. Delta wik1 cells are impaired in stress-induced activation of Spc1 and show a G2 cell cycle delay and osmosensitive growth. Moreover, overproduction of a constitutively active form of Wik1 induces hyperactivation of Spc1 in wis1(+)-dependent manner, suggesting that Wik1 regulates Spc1 through activation of Wis1. A mutation of mcs4+ (mitotic catastrophe suppressor) was originally isolated as a suppressor of the mitotic catastrophe phenotype of a cdc2-3w wee1-50 double mutant. We have found that mcs4- cells are defective at activation of Spc1 in response to various forms of stress. Epistasis analysis has placed Mcs4-upstream of Wik1 in the Spc1 activation cascade. These results indicate that Mcs4 is part of a sensor system for multiple environmental signals that modulates the timing of entry into mitosis by regulating the Wik1-Wis1-Spc1 kinase cascade. Inactivation of the sensor system delays the onset of mitosis and rescues lethal premature mitosis in cdc2-3w wee1-50 cells.  相似文献   

9.
10.
11.
12.
Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to Saccharomyces cerevisiae Hog1 and mammalian p38 kinases. Whereas Hog1 is specifically responsive to osmotic stress, we report here that Spc1 is activated by multiple forms of stress, including high temperature and oxidative stress. In this regard Spc1 is more similar to mammalian p38. Activation of Spc1 is crucial for survival of various forms of stress. Spc1 regulates expression of genes encoding stress-related proteins such as glycerol-3-phosphate dehydrogenase (gpd1+) and trehalose-6-phosphate synthase (tps1+). Spc1 also promotes expression of pyp2+, which encodes a tyrosine phosphatase postulated as a negative regulator of Spc1. This proposal is supported by the finding that Spc1 associates with Pyp2 in vivo and that the amount of Spc1 tyrosine phosphorylation is lower in a Pyp2-overproducing strain than in the wild type. Moreover, the level of stress-stimulated gpd1+ expression is higher in delta pyp2 mutants than in the wild type. These findings demonstrate that Spc1 promotes expression of genes involved in stress survival and that of regulation may be commonly employed to modulate MAPK signal transduction pathways in eukaryotic species.  相似文献   

13.
14.
15.
We have characterized an open reading frame of 2,454 bp on chromosome I of Schizosaccharomyces pombe as the gene encoding trehalose-6P phosphatase (tpp1(+)). Disruption of tpp1(+) caused in vivo accumulation of trehalose-6P upon heat shock and prevented cell growth at 37 to 40 degrees C. Accumulation of trehalose-6P in cells bearing a chromosomal disruption of the tpp1(+) gene and containing a plasmid with tpp1(+) under the control of the thiamine-repressible promotor correlated with tpp1(+) repression. The level of tpp1(+) mRNA rose upon heat shock, osmostress, or oxidative stress and was negatively controlled by cyclic AMP-dependent protein kinase activity. Expression of tpp1(+) during oxidative or osmotic stress, but not during heat shock, was under positive control by the wis1-sty1 (equivalent to phh1 and spc1) mitogen-activated protein kinase pathway. Analysis of Tpp1 protein levels suggests that the synthesis of trehalose-6P phosphatase may also be subjected to translational or posttranslational control.  相似文献   

16.
17.
Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently reported to play a crucial role in the oxidative stress and heat shock responses. These conclusions were based on three findings: 1) osmotic, oxidative, and heat stresses activate Spc1/StyI in wis4 cells; 2) oxidative stress and heat shock activate Spc1/StyI in cells that express Wis1AA, in which MEKK consensus phosphorylation sites were replaced with alanine; and 3) Spc1/StyI is maximally activated in Δpyp1 cells. Contrary to these findings, we report: 1) Spc1/StyI activation by osmotic stress is greatly reduced in wis4 cells; 2) wis1-AA and Δwis1 cells have identical phenotypes; and 3) all forms of stress activate Spc1/StyI in Δpyp1 cells. We also report that heat shock, but not osmotic or oxidative stress, activate Spc1 in wis1-DD cells, which express Wis1 protein that has the MEKK consensus phosphorylation sites replaced with aspartic acid. Thus osmotic and oxidative stress activate Spc1/StyI by a MEKK-dependent process, whereas heat shock activates Spc1/StyI by a novel mechanism that does not require MEKK activation or Pyp1 inhibition.  相似文献   

18.
Matsuo Y  Tanaka K  Matsuda H  Kawamukai M 《FEBS letters》2005,579(12):2737-2743
In Schizosaccharomyces pombe, a major role of chitin is to build up a complete spore. Here, we analyzed the cda1(+) gene (SPAC19G12.03), which encodes a protein homologous to chitin deacetylases, to know whether it is required for spore formation in S. pombe. The homothallic Deltacda1 strain constructed by homologous recombination was found to form a little amount of abnormal spores that contained one, two, or three asci, similar to (but not as strong as) the phenotype observed in a deletion mutant of chs1 encoding chitin synthase 1. This phenotype is reversed by expression of S. cerevisiae chitin deacetylase CDA1 or CDA2, suggesting that cda1 encodes a chitin deacetylase. To support the role of Cda1 in sporulation, the timing of expression of cda1(+) mRNA increased during sporulation process. We also found that the Cda1 protein self-associated when its binding was tested both by two-hybrid system and immunoprecipitation. Thus, these data indicated that cda1(+) is required for proper spore formation in S. pombe.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号