首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We have studied the duplex-hairpin conformational transition in two perfectly palindromic sequences, d(CGCGCGATCGCGCG)(I) and d(CGCGCGTACGCGCG)(II), by means of UV-melting, electrophoretic and T-jump experiments. Both tetradecamers exhibit biphasic thermal profiles. The lower temperature transition is concentration dependent whereas the higher temperature transition is not. The former transition has been characterized by gel electrophoresis and shows two distinct bands, whose intensity depends on temperature. This behavior is due to the occurrence of a slow premelting interconversion between the duplex and hairpin forms in both tetradecamers. The kinetics of hairpin formation from the duplex is studied by T-jump experiments. Relaxation spectra are well reproduced by a single relaxation time with rate constants characterized by a high temperature coefficient. In 10 mM NaCl, the duplex-hairpin conversion of I is characterized by an apparent activation energy of 96 ± 6 kcal/mol, a value rather close to the expected denaturation enthalpy. In 1 mM NaCl a value slightly lower has been obtained. The rate of duplex-hairpin interconversion has been found to decrease as the salt concentration is raised. These data suggest that the transformation from the duplex to the hairpin form should imply a transition state with a simultaneous breaking of most base pairs, if not total strand separation.  相似文献   

2.
The duplex–hairpin interconversion of two DNA decamers, d(CAACGGGTTG) and d(CAACCCGTTG), has been characterized thermodynamically and kinetically by using uv-melting and nmr relaxation methods. Separately, each decamer shows slow exchange between hairpin and duplex conformations. The hairpin conformations have melting points of 47 and 50°C, respectively, and exhibit similar thermodynamic stabilities. The enthalpies of duplex formation, measured by nmr, were found to be very similar (ΔHDH = 26 ± 3 kcal/mole) for both decanters at low salt concentrations (< 50 mM NaCl). However, as the salt concentration was increased the behavior of ΔHDH, and kinetics is significantly different for each decamer. The d(CAACGGGTTG) decamer forms a duplex containing two central G·G mismatches at high salt and DNA concentration. Based upon the measurement of high interconversion activation energies and a decrease in hairpin formation rate with increasing salt, the interconversion between hairpin and duplex was concluded to proceed by complete strand dissociation. In contrast, the d(CAAC-CCGTTG) decamer was determined to form a duplex with two centrally located C·C mismatches at pH values less than 6.2, consistent with the formation of a hemiprotonated C+·C mismatch. At pH values greater than 6.4, the hairpin–duplex equilibrium is almost completely shifted toward the hairpin conformation at DNA concentrations of 0.5–7.0 mM and salt concentrations of 10–100 mM. The interconversion of duplex and hairpin conformations was ascertained by means of both kinetic and thermodynamic measurements to proceed by a slightly different mechanism than its complementary decamer. Although the interconversion proceeds by complete strand separation as suggested by high duplex-hairpin interconversion activation enthalpies, the increasing hairpin formation rate with increasing ionic strength as well as the ΔHDH, dependence on sail indicate that an intermediate internally bulged duplex (no C+·C formation) is stabilized by increasing ionic strength. These data support an interconversion mechanism where an intermediate internally bulged duplex may be the rate limiting step before strand separation. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
We report Potential of Mean Force studies to describe the relative thermodynamic stabilities of d(GCCGCAGC) in a mismatched duplex and a hairpin monomer conformation in NaCl solution. The PMF calculations are combined with previous molecular mechanics and normal mode analysis in order to estimate the role of different components of the free energy in determining the relative stability of the duplex and hairpin structures. The high entropy associated with the loop region and the lack of minor groove phosphate-phosphate interactions in the hairpin compete against the gain in enthalpic contribution to the free energy due to base pairing in the mismatched duplex. The combined free energy calculations show that the hairpin is the most stable conformation at low salt and that a hairpin to duplex transition takes place at approximately 0.47 M NaCl. In addition, we studied the hairpin to partially stacked single helical conformation equilibrium at low salt. We found a small variation in transition temperature in salt concentration, delta Tm/delta log10(cs) approximately 2-3 degrees K/decade, in contrast to the duplex to hairpin or duplex to partially stacked single helix transition where the transition temperature exhibited marked dependence on salt concentration. This is in qualitative agreement with experimental data. Based on the Potential of Mean Force free energy calculation, the order of relative stability of the three-conformations studied varies with salt concentration. We observed the following orders of stability: stacked single helix greater than hairpin greater than duplex for cs less than 0.77 M NaCl; single helix greater than duplex greater than hairpin for 0.77 less than Cs less than 2.1 M; and duplex greater than hairpin greater than single strand for cs greater than 2.1 M. From the calculated PMF free energy curves in the NaCl concentration range, 0.012 less than cs less than 5.0 M, we can assign upper and lower bounds for the non-ionic differences in free energy between the duplex, hairpin, and stacked single helical states (at standard conditions: cs = 1.0 M, T = 25 degrees C, and 1 M oligomer concentration). We found that for delta G duplex single helix = G duplex - 2 x G single helix less than -7.38 Kcal/mol, the single helix is the least stable state. For the duplex-to-hairpin free energy difference in the range, -1.87 less than delta G duplex-hairpin less than 0.03 Kcal/mol, there will always be a salt-induced hairpin-to-duplex transition for 0.01 less than cs less than 1.6 M NaCl. If delta G duplex-hairpin less than -1.87, the duplex is always more stable than the hairpin; and for delta G duplex-hairpin greater than Kcal/mol, the hairpin state is always more stable than the duplex, for all salt concentrations.  相似文献   

4.
Hairpin formations of decamers d(CGCG-TA-CGCG), d(CGCG-TG-CGCG), and their m5dC analogs are evidenced by the existence of biphasic absorbance melting profiles in which the lower transition temperature increases with increasing oligomer concentration, whereas the higher melting temperature is concentration independent. The corresponding temperature dependent CD intensity at 285 nm exhibits a maximum around 55 degrees C. These observations are consistent with the interpretation that the lower temperature transition corresponds to the duplex to hairpin transformation while the melting of hairpins into single strands constitutes the higher temperature transition. The CD spectrum of the hairpin conformation appears to be characterized by a couplet with nearly equal positive and negative intensities at 285 and 255 nm, respectively, while a significantly smaller intensity at 285 nm is apparent for the duplex form. The hairpin conformation is suspected to contain a two-nucleotide loop. Titrations with NaCl further suggest that, in contrast to the TA sequence, the TG sequence with wobble base pairing favors Z formation under high salt conditions.  相似文献   

5.
Abstract

Hairpin formations of decamers d(CGCG-TA-CGCG), d(CGCG-TG-CGCG), and their m5dC analogs are evidenced by the existence of biphasic absorbance melting profiles in which the lower transition temperature increases with increasing oligomer concentration, whereas the higher melting temperature is concentration independent. The corresponding temperature dependent CD intensity at 285 nm exhibits a maximum around 55°C. These observations are consistent with the interpretation that the lower temperature transition corresponds to the duplex to hairpin transformation while the melting of hairpins into single strands constitutes the higher temperature transition. The CD spectrum of the hairpin conformation appears to be characterized by a couplet with nearly equal positive and negative intensities at 285 and 255 nm, respectively, while a significantly smaller intensity at 285 nm is apparent for the duplex form. The hairpin conformation is suspected to contain a two-nucleotide loop. Titrations with NaCl further suggest that, in contrast to the TA sequence, the TG sequence with wobble base pairing favors Z formation under high salt conditions.  相似文献   

6.
The palindromic deoxyribonucleotides 5'-CGCGA-TATCGCG-3' and 5'-CGCGTTAACGCG-3' have been characterized by 1H NMR spectroscopy. The NMR data identified both B-DNA duplex conformations and hairpin conformations, the latter with loop regions consisting of the four central nucleotides. The resonances of the various conformations were assigned by use of two-dimensional NMR methods. The relative stability of the various conformations was investigated as a function of temperature, ionic strength and nucleotide concentration. The duplexes were found to be stabilized at high ionic strength and at low temperature, while the hairpins were stabilized at low ionic strength and at medium temperature. The thermodynamics of the duplex-hairpin and the hairpin-random coil transitions were examined, and compared to the other two oligonucleotide in the palindromic d(CGCG(A/T)4CGCG) oligonucleotide family. The relative stabilities of the duplex conformations with respect to the random coil conformations are similar for the d(CGCGAATTCGCG), d(CGCGATATCGCG) and d(CGCGTATACGCG) oligonucleotides. The duplex conformation of d(CGCGTTAACGCG) is less stable. The hairpin of d(CGCGTTAACGCG) seems also to be less stable relative to the random coil conformation than in the case of the other oligonucleotides at an equal oligonucleotide concentration. A cruciform intermediate between the duplex and hairpin conformations is suggested to explain some discrepancies observed in this work in case of the d(CGCGTTAACGCG) oligonucleotide. This is similar to what has been reported for the d(CGCGTATACGCG) oligonucleotide.  相似文献   

7.
The self-complementary octamers d(CGCTAGCG) and d(CGaCTAGCG) (aC, arabinofuranosylcytidine) were studied by means of NMR spectroscopy. It is shown that d(CGaCTAGCG), under suitable conditions of oligonucleotide concentration, ionic strength and temperature, exclusively adopts a hairpin structure. However, under the same experimental conditions (5 mM DNA, no added salt, 295 K) d(CGCTAGCG) mainly adopts a B-DNA-type duplex. At lower temperatures (less than or equal to 290 K) the hairpin form of d(CGaCTAGCG) occurs in slow exchange with an intact B-DNA-type duplex. When the DNA concentration of d(CGCTAGCG) is dramatically reduced (less than or equal to 0.5 mM) the hairpin form becomes highly favoured at the expense of the dimer. Moreover, proton-chemical-shift considerations indicate that the structural features of the hairpin structure of d(CGCTAGCG) mimic, in part, those of the modified octamer d(CGaCTAGCG), i.e. a loop comprising only the two central residues with the thymine located into the minor groove (Pieters, J. M. L., de Vroom, E., van der Marel, G. A., van Boom, J. H., Koning, T. M. G., Kaptein, R. and Altona, C. unpublished results). Thermodynamic analysis of d(CGCTAGCG) yields an average Tmd value of 342 K (1 M DNA) and a delta Hod value of -266 kJ/mol for the dimer/coil transition and an average Tmh value of 321 K and delta Hoh - 102 kJ/mol for the hairpin/coil equilibrium. For the duplex/coil equilibrium of d(CGaCTAGCG) an average Tmd value of 336 K (1 M DNA) and delta Hod value of -253 kJ/mol are deduced. The hairpin/coil transition of d(CGaCTAGCG) is characterized by a delta Hoh value of -104 kJ/mol and an average Tmh value of 331 K. It is concluded that incorporation of an arabinofuranosylcytidine in the octamer d(CGaCTAGCG) results in stabilization of the hairpin form, whereas the dimer is destablized by two aC.dG base pairs.  相似文献   

8.
UV and CD data of the partially self-complementary heptadecadeoxynucleotide d(CGCGCGTTTTTCGCGCG), obtained as a function of temperature, salt and strand concentration, show that: at low NaCl and strand concentration the oligomer exhibits, on increasing the temperature, a biphasic thermal profile which is indicative of two structural transitions, from dimeric duplex to hairpin and from hairpin to coil; the loop stabilizes enthalpically both B and Z hairpin structures with respect to the corresponding unconstrained hexamer d(CGCGCG) by a few Kcal/mol; the oligomer undergoes a B-Z transition which appears to be complete, at 0 degree C, when induced by NaClO4; by contrast the B-Z transition induced by NaCl does not reach completeness even at salt saturation. The independence of the denaturation temperature, at high salt conditions, on the oligomer concentration indicates that the Z structure is present also in the hairpin.  相似文献   

9.
We have incorporated 5-fluorouridine into several sites within a 19-mer RNA modelled on the translational operator of the MS2 bacteriophage. The 19F NMR spectra demonstrate the different chemical shifts of helical and loop fluorouridines of the hairpin secondary structure. Addition of salt gives rise to a species in which the loop fluorouridine gains the chemical shift of its helical counterparts, due to the formation of the alternative bi-molecular duplex form. This is supported by UV thermal melting behaviour which becomes highly dependent on the RNA concentration. Distinct 19F NMR signals for duplex and hairpin forms allow the duplex-hairpin equilibrium constant to be determined under a range of conditions, enabling thermodynamic characterisation and its salt dependence to be determined. Mg2+ also promotes duplex formation, but more strongly than Na+, such that at 25 degrees C, 10 mM MgCl2 has a comparable duplex-promoting effect to 300 mM NaCl. A similar effect is observed with Sr2+, but not Ca2+ or Ba2+. Additional hairpin species are observed in the presence of Na+ as well as Mg2+, Ca2+, Sr2+ and Ba2+ ions. The overall, ensemble average, hairpin conformation is therefore salt-dependent. Electrostatic considerations are thus involved in the balance between different hairpin conformers as well as the duplex-hairpin equilibrium. The data presented here demonstrate that 19F NMR is a powerful tool for the study of conformational heterogeneity in RNA, which is particularly important for probing the effects of metal ions on RNA structure. The thermodynamic characterisation of duplex-hairpin equilibria will also be valuable in the development of theoretical models of nucleic acid structure.  相似文献   

10.
Thermally induced structural transition in the d(TTTTATAATAAA) d(TTTATTATAAAA) heteroduplex is characterized by UV-spectroscopy and differential scanning calorimetry. At low salt (less than 0.1 M) the occurrence of a cooperative transition in the lower temperature range, followed by a broad transition connected with small increase in absorbance is observed. At high salt (greater than or equal to 0.2 M) a single, monophasic transition appears. Linear dependence of the latter on log of salt concentration (dTm:dlogM = 14.2 degrees C) and of 1/Tm on log of oligomer concentration [derived therefrom delta H (v.H.) = 77.1 kcal/mole (duplex)] allows relating it to the melting of the heteroduplex helix. The non-cooperative transition, independent of oligomer concentration and similar to that of the single chain, was attributed to melting of short hairpin helices upon heteroduplex dissociation. Calorimetric enthalpy: 75.6 kcal/mole (duplex) proved significantly lower than predicted from known calorimetric data for poly[d(AT)] and poly d(A) X poly d(T).  相似文献   

11.
By means of one- and two-dimensional NMR spectroscopy the solution structures of the partly self-complementary octamer d(m5C-G-m5C-G-A-G-m5C-G) were investigated. It is shown that this DNA fragment, under conditions of high DNA concentration (8 mM DNA) and/or high ionic strength prefers to adopt a duplex structure. At low DNA concentration (0.4 mM DNA), the duplex exists in a 1:1 slow equilibrium with a monomeric hairpin form. Addition of salt destabilizes the hairpin structure in favour of the dimer. At high temperatures the hairpin form, as well as the dimer structure, exist in a fast equilibrium with the random-coil form. For the hairpin/random-coil equilibrium a Tm of 329 K and a delta H degree of -121 kJ.mol-1 were deduced. These thermodynamic parameters are independent of the DNA concentration, as is expected for a monomeric structure. For the dimer to coil transition a Tm of 359 K (1 M DNA) and a delta H degree of -285 kJ.mol duplex-1 were derived. The thermodynamic data of the hairpin-coil transition mutually agree with those recently reported for the hairpin to random coil equilibrium of the DNA octamer d(m5C-G-m5C-G-T-G-m5C-G) [Orbons, L. P. M., van der Marel, G. A., van Boom, J. H. & Altona, C. (1987) J. Biomol. Struct. Dyns. 4, 939-963]. It is demonstrated that the dimer structure exhibits B-DNA characteristics, as is witnessed by the NOESY experiments and the analysis of the proton-proton coupling data. It is shown that the base-pair formation of the G x A mismatches is anti-anti. A comparison of 1H and 31P chemical-shift data of the title compound with those of a well-characterized B-DNA structure reveals large differences in the dm5C(3)-dG(4)-dA(5) part of the mismatched dimer structure. These differences apparently indicate some major local structural changes due to the incorporation of the G x A mismatches. Under the most extreme conditions used (i.e. up to 3 M NaCl or 75% CH3OH in the presence of 10 mM MgCl2) no Z-DNA structure was observed. It is shown that the structural features of the hairpin form of the title compound mimic those of the hairpin structure of d(m5C-G-m5C-G-T-G-m5C-G). An energy-minimized model of the hairpin form is given.  相似文献   

12.
The solution conformations of the oligonucleotides d(C-C-G-A-A-T-T-C-G-G) and d(C-C-G-A-m6A-T-T-C-G-G) as a function of temperature and sample concentration were investigated by means of 1H-NMR spectroscopy. The NMR spectra revealed that, at certain combinations of temperature and low sample and salt concentration, both compounds exist as a B-DNA-type duplex slowly (on the 1H-NMR time scale) interconverting with a monomeric species. From chemical shift data and imino-proton spectra, it is concluded that the monomeric species consists of a mixture of a hairpin form in rapid equilibrium with the random-coil form. The double-helical stem of the hairpin is formed by the six terminal cytidine and guanine residues, whereas the four core residues, -A-(m6)A-T-T-, partake in the loop. Thermodynamic analysis of the chemical shift of the resonances of the monomeric species vs temperature profiles of the two decamers and mutual comparison of these profiles indicate the following: the influence of N6-methylation of residue A(5) upon the local structure of the hairpin must be small; methylation decreases the stability of the duplex relative to the monomeric species: the temperature at which the fraction duplex equals 0.5 was found to be 312 K for the parent compound and 305 K for the methylated decamer at 2 mM sample concentration; methylation does not significantly alter the stability of the hairpin form relative to the random coil form: the Tm of the hairp----n equilibrium random-coil equilibrium is 308 K for the parent compound and 306 K for the methylated decamer. A higher fraction hairpin-like structure for the N6-methylated compound is observed under identical conditions of temperature and sample concentration: at 300 K, 2 mM sample concentration, the fraction hairpin form is 0.12 for d(C-C-G-A-A-T-T-C-G-G) and 0.20 for d(C-C-G-A-m6A-T-T-C-G-G). This finding appears to be a consequence of the reduced stability of the methylated dimeric species relative to the monomeric species, and to depend upon the sodium-ion concentration: it becomes more pronounced under low-salt conditions.  相似文献   

13.
Duplex-hairpin transitions in DNA: NMR studies on CGCGTATACGCG.   总被引:22,自引:20,他引:2       下载免费PDF全文
Two dimensional NMR methods have been used to assign proton resonances in the high salt (greater than or equal to 100mM Na+), low temperature duplex form of the self-complementary DNA dodecamer d(CGCGTATACGCG). At low salt (less than or equal to 10mM Na+) and higher temperature marked changes in the two-dimensional spectrum, and in the one-dimensional spectrum reported by others, indicate that the molecule converts to an alternate conformation. Using saturation transfer methods, many of the resonances of this new conformation have been assigned, and the kinetics of the interconversion of the two forms has been studied. The linewidth, correlation time, and concentration dependence of the formation of this alternate conformation support the idea that it is a unimolecular hairpin. Observation of chemical shifts and NOEs in the hairpin conformation allow some preliminary structural characterization. Examination of the energetics of the interconversion suggests that the exchange between forms does not proceed through a single stranded intermediate, but rather through another pathway, probably involving a cruciform structure.  相似文献   

14.
Conformational studies on three DNA-oligomers (d(CGCGCGTTAATT), d(CGCGTTAA) and d(CGCGCGTT) in solution by circular dichroism spectroscopy are reported. In low salt solution, all three DNA oligomers exhibit a characteristic B-conformation. However, under the influence of high salt concentration i.e. 5M NaCl, the octamer d(CGCGCGTT) exhibits 'A' conformation whereas the decamer and dodecamer retain B-conformation. On addition of millimolar amount of NiCl2 to the 5M NaCl, solution of oligodeoxynucleotides a B-Z transition is observed in octamer, decamer and dodecamer. However, NiCl2 titrations show that mid point of transition for dodecamer is at 2.25 mM, for decamer is at 13 mM NiCl2 and for octamer is 17 mM at NiCl2. In 60% alcohol all three oligonucleotides remain in the B-conformation. The melting temperatures of oligonucleotides at various salt concentration are also reported. Thermodynamic parameters calculated by melting profile using a two state model show that dodecamer and decamer are most stable in their 5M NaCl, B-form. However, octamer is more stable in its Z form than that of its 'A' form.  相似文献   

15.
The secondary structures of the synthetic DNA fragments d(CGCGCGTTTTTCGCGCG) (T5), d(CGCGCGAAAAACGCGCG) (A5), d(CGCGCGTACGCGCG) (TA), and d(CGCGCGATCGCGCG) (AT) were investigated in a combined electrophoretic and spectroscopic study. All the oligomers exist, at low temperature and over a wide range of ionic strength (0.5-100 mM salt) and of nucleotide concentration [0.1-2.0 mM (phosphate)], as a mixture of two slowly interconverting species, identified as the dimeric duplex and the monomeric hairpin structure. The thermodynamic parameters for hairpin denaturation of T5, A5, TA, and AT and for duplex denaturation of d(CGCGCG) show that (a) the hairpins are more stable than the reference hexamer duplex at all accessible nucleotide concentrations; (b) the loop contributes favorably to the enthalpy change of hairpin denaturation in the four DNA fragments; (c) the base composition of the loop (A vs T) and the size of the loop (A5/T5 vs TA/AT) do not appreciably influence the enthalpic contents of the hairpins; (d) hairpins TA and AT, with two AT bases intervening in the CG self-complementary part of the molecule, exhibit a markedly higher thermal stability than hairpins T5 and A5, which is entropic in origin. These findings are consistent with the presence of two-residue loops in the tetradecamers TA and AT.  相似文献   

16.
A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1H NMR studies in H2O and D2O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2", it was concluded that in d(CGCCGCAGC) and d(CGCCGTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins.  相似文献   

17.
This study probes the potential of variable-temperature high performance liquid chromatography (VT-HPLC) as a tool for dissecting and modulating nucleic acid structural transitions, using as a model the duplex-hairpin-coil transitions of d(CGCGAATTCGCG). It is demonstrated that VT-HPLC, combined with diode-array detection of the uv signal, enables, for the first time, a physical separation of spectroscopically distinct species that can be assigned to the duplex, hairpin, and coil forms of d(CGCGAATTCGCG). Although the species are spectroscopically distinguishable, they are not readily isolated. Hence, if fractions from the peaks for hairpin or duplex forms are collected and subsequently reinjected onto the cartridge, reequilibration occurs, and both hairpin and duplex peaks are observed. Area integration of the peaks corresponding to duplex and hairpin species provides a means to monitor the duplex to hairpin transition at effective concentrations in the nanomolar range, well below that accessible by conventional spectrophotometers. Concentration-dependent equilibrium constants, melting temperatures, and standard state enthalpies extracted from our measurements compare very well with previous literature results, and with our own results that take into account the effect of our solvent conditions [100 mM TEAA (triethylammonium acetate) and variable acetonitrile] on the melting behavior. By combining precise temperature control with separation based on size, physical behavior, and interaction free energies, VT-HPLC provides a powerful tool for both the modulation and the separation of nucleic acid conformations.  相似文献   

18.
Optical melting transitions of the short DNA hairpins formed from the self-complementary DNA oligomers d[GGATACX4GTATCC] where X = A, T, G, or C measured in 100 mM NaCl are presented. A significant dependence of the melting transitions on loop sequence is observed and transition temperatures, tm, of the hairpins vary from 58.3 degrees C for the T4 loop hairpin to 55.3 degrees C for the A4 loop. A nearest-neighbor sequence-dependent theoretical algorithm for calculating melting curves of DNA hairpins is presented and employed to analyze the experimental melting transitions. Experimental melting curves were fit by adjustment of a single theoretical parameter, Fend(n), the weighting function for a hairpin loop comprised of n single-strand bases. Empirically determined values of Fend(n) provide an evaluation of the free-energy of hairpin loop formation and stability. Effects of heterogeneous nearest-neighbor sequence interactions in the duplex stem on hairpin loop formation were investigated by evaluating Fend(n) in individual fitting procedures using two of the published sets of nearest-neighbor stacking interactions in DNA evaluated in 100 mM NaCl and given by Wartell and Benight, 1985. In all cases, evaluated values of Fend(n) were obtained that provided exact theoretical predictions of the experimental transitions. Results of the evaluations indicate: (1) Evaluated free-energies of hairpin loop formation are only slightly dependent on loop sequences examined. At the transition temperature, Tm, the free-energy of forming a loop of four bases is approximately equal for T4, G4, or C4 loops and varies from 3.9 to 4.8 kcal/mole depending on the set of nearest-neighbor interactions employed in the evaluations. This result suggests, in light of the observed differences in stability between the T4, G4, and C4 loop hairpins, that sequence-dependent interactions between base residues of the loop are most likely not the source of the enhanced stability of a T4 loop.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The solution structure of 20 mer RNA contained of the loop 9.1a region of Tetrahymena group I intron was studied by NMR. This RNA oligomer has hairpin and duplex structures at high concentration (1 mM) of the sample even at low NaCl concentration (5 mM). In the hairpin structure, GC base pairs by the loop-loop interaction are formed. As study of NOESY measurements, and by the compared with the sequence, this loop region is presumed to interact with the loop 5c.  相似文献   

20.
Facile interconversion of duplex structures formed by copolymers of d(CG)   总被引:2,自引:0,他引:2  
Correlations between DNA sequence and reactivity have often been drawn with an implicit or explicit connection to duplex structure. An in vitro model using oligonucleotides of defined sequences has been developed to characterize a potential source of the hypersensitivity that naturally occurring regions of redundant sequence exhibit with many nucleases. S-1 nuclease was used here to diagnose the unusual hybridization of copolymeric DNA, d(CG)6, and related oligomers, through product and kinetic analysis. Fully complementary but redundant sequences reacted with this enzyme almost an order of magnitude faster than did heterogeneous fragments of DNA. Hydrolysis products of the copolymers indicated that conformations with unpaired termini were the sole substrates under these studies, and only a facile equilibrium between aligned and extended structures was required to explain the heightened reactivity of this DNA. For example, d(CG)6 was converted to d(CG)5 and d(CG)4 whereas d(CG)4C was initially processed to an octamer and then only later to a hexamer. Catalysis by S-1 exhibited no other substrate or product specificity; even the disordered bases in the loop region of a hairpin structure, d(CG)3T4(CG)3, did not provide sites of enhanced enzyme action. The rate of DNA consumption under standard conditions was proportional to the expected concentration of overhanging sequences rather than the absolute amount of DNA present. All initial attempts to saturate enzyme activity failed, and therefore, the rate of substrate formation through strand slippage was always faster than the catalytic depletion of unpaired bases. Only a low-energy transition state(s) must then separate the various hybridized species since this structural equilibration proceeded readily under conditions of 10 mM potassium phosphate, pH 7, 100 mM NaCl, and 22 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号