首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Qiu L  Wang Q  Lin L  Liu X  Jiang X  Zhao Q  Hu G  Wang R 《Chirality》2009,21(2):316-323
A new catalytic system, generated from the readily available and inexpensive beta-sulfonamide alcohol L*, Ti(O(i)Pr)(4), Et(2)Zn, and tertiary amine base (R(3)N), effectively catalyzes the enantioselective addition of various terminal alkynes including some quite challenging alkynes to aldehydes in good yields and excellent enantioselectivities. Up to 96% yield and >99% enantioselectivity were achieved with the use of N,N-diisoproylethylamine (DIPEA) as an additive in this asymmetric addition.  相似文献   

2.
The enantioselective alkynylation of aldehyde catalyzed by chiral zinc(II)-complexes was studied by means of the density functional theory (DFT). All the structures were optimized completely at the B3LYP/6-31G(d,p) level. To obtain more exact energies, single-point energy calculations at B3LYP/6-31+G(d,p) level were carried out on the B3LYP/6-31G(d,p) geometries. As shown, this enantioselective alkynylation was endothermic. The chirality-determining step for the alkynylation was the formation of the catalyst–ethanol complexes and the transition states for this step involved a six-membered ring. The dominant products predicted theoretically were of (R)-chirality, in good agreement with experiment.   相似文献   

3.
Kii S  Maruoka K 《Chirality》2003,15(1):68-70
Our recently designed chiral bis-titanium(IV) catalyst can be successfully utilized for the catalytic enantioselective allylation of ketones with tetraallyltin. The high asymmetric induction is achievable in the case of aromatic ketones.  相似文献   

4.
The synthesis of the first polymer-supported TADDOL is reported. Its efficiency as chiral ligand of Ti(IV) was studied in the Diels-Alder cycloaddition of cyclopentadiene to 3-crotonoyl-1,3-oxazolidin-2-one, and was superior to that observed for its homogeneous equivalent. (4R,5R)-α,α,α′,α′-2-pentaphenyl-4,5-dimethanol-1,3-dioxolane. Recycling of the heterogeneous Ti(IV)-TADDOLate was also studied, being the most suitable method for the repreparation of the catalyst from the ligand after use. Chirality 9:191–197, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Mao J  Wan B  Wu F  Lu S 《Chirality》2005,17(5):245-249
Ephedrine-derived sulfamide-amine alcohol 3 was found to be an effective catalyst for the asymmetric phenylacetylene addition to aldehydes at room temperature without using Ti(O(i)Pr)4 and Zn(OTf)2. It afforded the propargylic alcohols in high yields (up to 99%) and good enantioselectivities (up to 84% ee), which were much higher than that based on N-methylephedrine under the same reaction conditions. Its weakly coordinative sulfonamide moiety of the ligand plays an important role for further acceleration and stereocontrol in the alkynylation.  相似文献   

6.
A series of (S)‐BINOL ligands substituted at the 3 position with some five‐membered nitrogen‐containing aromatic heterocycles were effectively prepared and their catalytic abilities were evaluated in the asymmetric addition of diethylzinc to benzaldehyde in the presence of titanium tetraisopropoxide. Under the optimized reaction conditions, titanium complex of (S)‐3‐(1H‐benzimidazol‐1‐yl)‐1,1′‐bi‐2‐naphthol was found to be the most efficient catalyst for asymmetric ethylation of various aldehydes to generate the corresponding secondary alcohols in up to 99% yield and 91% ee. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.  相似文献   

9.
The straightforward synthesis of a series of enantiomerically pure pyridine- and quinoline-N-oxides and their use as new organocatalysts for the enantioselective allylation of aromatic aldehydes with allyl(trichloro)silane is reported. The catalysts were readily assembled by combining commercially available enantiopure diamines with heterocyclic carboxylic acid N-oxides. The obtained compounds showed moderate to good chemical efficiency (up to 73% chemical yield) and satisfactory stereoselectivity (up to 50% ee). Tentative models of stereoselection were proposed to account for the stereochemical outcome of the reaction and to explain how the structural features of the catalyst control the stereoselctivity.  相似文献   

10.
11.
Qinghan Li  Han‐Mou Gau 《Chirality》2011,23(10):929-939
Three alkyltitanium reagents of RTi(O‐i‐Pr)3 (R = Cy ( 1a ), i‐Bu ( 1b ), and n‐Bu ( 1c )) were prepared in good yields. The high‐resolution mass spectroscopy showed that 1b and 1 c in the gas phase are monomeric species. However, the solid state of 1a revealed a dimeric structure. Asymmetric additions of 1a , 1b , 1c to aldehydes catalyzed by a titanium catalyst of (R)‐H8‐BINOL were studied at room temperature. The reactions produced desired secondary alcohols in good yields with good to excellent enantioselectivities of up to 94% ee. Reactivity and enantioselectivity differences, in terms of steric bulkiness of the R nucleophiles, are herein described. The addition reactions of secondary c‐hexyl to aldehydes were slower than the reactions of primary i‐butyl or n‐butyl nucleophiles. For the primary alkyls, lower enantioselectivities were obtained for products from addition reactions of the linear n‐butyl as compared with the enantioselectivities of products from the addition reactions of the branched i‐butyl group. The same stereochemistry of RTi(O‐i‐Pr)3 addition reactions as the addition reactions of organozinc, organoaluminum, Grignard, or organolithium reagents directly supports the argument of that titanium‐catalyzed addition reactions of aldehydes involve an addition of an organotitanium nucleophile. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

12.
A chiral peptide nucleic acid (PNA) beacon containing a C-5 modified monomer based on L-lysine was synthesized. The terminal amino group of the lysine side chain was linked to a spacer for future applications on surfaces. The PNA beacon bears a carboxyfluorescein fluorophore and a dabcyl quencher at opposite ends. The DNA binding properties were compared with those of a homologous PNA beacon containing only achiral monomers. Both beacons underwent a fluorescence increase in the presence of complementary DNA, with higher efficiency and higher selectivity (evaluated using single mismatched DNA sequences) observed for the chiral monomer containing PNA. Ion exchange (IE) HPLC with fluorimetric detection was used in combination with the beacon for the selective detection of complementary DNA. A fluorescent peak corresponding to the PNA beacon:DNA duplex was observed at a very low detection limit (1 nM). The discriminating capacity of the chiral PNA beacon for a single mismatch was found to be superior to those observed with the unmodified one, thus confirming the potency of chirality for increasing the affinity and specificity of DNA recognition.  相似文献   

13.
Zhou Y  Wang WH  Dou W  Tang XL  Liu WS 《Chirality》2008,20(2):110-114
A new C(2)-symmetric chiral catalyst 3,5-bis[(2S)-(hydroxy-diphenylmethyl)- pyrrolidin-1-ylmethyl]-1,3,4-oxadiazole was successfully synthesized by the reaction of 2,5-dichloromethyl-1,3,4-oxadiazole with (S)-alpha,alpha-diphenyl-2-pyrrolidinemethanol, and applied to the catalytic asymmetric reduction of prochiral ketones with borane. When the catalyst loading was 1 mol %, enantiomeric excesses of up to 86.8% and 94.5% were observed in reduction of aromatic and alpha-halo ketones, respectively.  相似文献   

14.
A highly enantioselective (R)-ester hydrolase was partially purified from a newly isolated bacterium, Acinetobacter sp. CGMCC 0789, whose resting cells exhibited a highly enantioselective activity toward the acetate of (4R)-hydroxy-3-methyl-2-(2-propynyl)- cyclopent-2-enone (R-HMPC). The optimum pH and temperature of the partially purified enzyme were 8.0 and 60 °C, respectively. The enantioselectivity of the crude enzyme was increased by 1.2-fold from 16 to 20 when the reaction temperature was raised from 30 to 60 °C. The activity of the crude enzyme was enhanced by 4.1-fold and the enantioselectivity (E-value) was markedly enhanced by 4.3-fold from 16 to 68 upon addition of a cationic detergent, benzethonium chloride [(diisobutyl phenoxyethoxyethyl) dimethyl benzylammoniom chloride]. The hydrolysis of 52 mM (R,S)-HMPC acetate to (R)-HMPC was completed within 8 h, with optical purity of 91.4% eep and conversion of 49%.  相似文献   

15.
A systematic study of the enantioselective resolution of ibuprofen by commercial Rhizomucor miehei lipase (Lipozyme(R) IM20) has been carried out using isooctane as solvent and butanol as esterificating agent. The main variables controlling the process (temperature, ibuprofen concentration, ratio butanol:ibuprofen) have been studied using an orthogonal full factorial experimental design, in which the selected objective function was enantioselectivity. This strategy has resulted in a polynomial function that describes the process. By optimizing this function, optimal conditions for carrying out the esterification of racemic ibuprofen have been determined. Under these conditions, enantiomeric excess and total conversion values were 93.8% and 49.9%, respectively, and the enantioselectivity was 113 after 112 h of reaction. These conditions have been considered in the design of a continuous reactor to scale up the process. The esterification of ibuprofen was properly described by pseudo first-order kinetics. Thus, a packed bed reactor operating as a plug-flow reactor (PFR) is the most appropriate in terms of minimizing the residence time compared with a continuous stirred tank reactor (CSTR) to achieve the same final conversion. This reactor shows a similar behavior in terms of enantioselectivity, enantiomeric excess, and conversion when compared with batch reactors. A residence-time distribution (RTD) shows that the flow model is essentially a plug flow with a slight nonsymmetrical axial dispersion (Peclet number = 43), which was also corroborated by the model of CSTR in series. The stability of the system (up to 100 h) and the possibility of reutilization of the enzyme (up to four times) lead to consider this reactor as a suitable configuration for scale up of the process.  相似文献   

16.
A cofactor regeneration system for enzymatic biosynthesis was constructed by coexpressing a carbonyl reductase from Pichia stipitis and a glucose dehydrogenase from Bacillus megaterium in Escherichia coli Rosetta (DE3) PlySs. Transformants containing the polycistronic plasmid pET-PII-SD2-AS1-B exhibited an activity of 13.5 U/mg protein with 4-chloro-3-oxobutanoate ethyl ester (COBE) as the substrate and an activity of 14.4 U/mg protein with glucose as the substrate; NAD(H) was the coenzyme in both cases. Asymmetric reduction of COBE to (S)-4-chloro-3-hydroxybutanoate ethyl ester [(S)-CHBE] with more than 99% enantiomeric excess was demonstrated by transformants. Furthermore, the paper made a comparison of crude enzyme catalysis and whole-cell catalysis in an aqueous monophasic system and a water/organic solvent biphasic system. In the water/n-butyl acetate system, the coexpression system produced 1,398 mM CHBE in the organic phase, which is the highest yield ever reported for CHBE production by NADH-dependent reductases from yeasts. In this case, the molar yield of CHBE was 90.7%, and the total turnover number, defined as moles (S)-CHBE formed per mole NAD+, was 13,980.  相似文献   

17.
Shi M  Sui WS 《Chirality》2000,12(7):574-580
Chiral trifluoromethanesulfonamide 4, diphenylphosphoramides 5 and 6, and phenylthiophosphoramide 7 were prepared from the reaction of trifluoromethanesulfonic anhydride, diphenylphosphinic chloride, and diphenylthiophosphinic chloride with (R)-(+)-1,1'-binaphthyl-2, 2'-diamine, respectively. They were used as catalytic chiral ligands in the asymmetric addition reaction of diethylzinc to aldehydes in the presence of titanium(IV) isopropoxide to give the corresponding sec-alcohols with 43-54%, 18-22%, 30-34%, and 52-64% enantiomeric excess, respectively. Copyright 2000 Wiley-Liss, Inc.  相似文献   

18.
Polymeric and monomeric V(V) chiral salen complexes‐catalyzed enantioselective ethyl cyanoformylation of aldehydes using ethyl cyanoformate as a source of cyanide was accomplished in the presence of several basic cocatalysts viz., NaOH, KOH, basic Al2O3 and hydrotalcite. Excellent yield (>95%) of chiral ethyl cyanohydrincarbonate with high enantioselectivity up to 94% was achieved in 24–36 h when hydrotalcite was used as an additive. The polymeric catalyst 1 is more reactive than the monomeric catalyst 2 to produce chiral ethyl cyanohydrincarbonate in high optical purity. The chiral polymeric catalyst 1 and cocatalysts hydrotalcite and basic alumina used in this study were recoverable and recyclable several times with retention of its performance. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The application of (S)‐1,1′‐binaphthyl‐2,2′‐diol as NMR chiral solvating agent (CSA) for omeprazole, and three of its analogs (lanso‐, panto‐, and rabe‐prazole) was investigated. The formation of diastereomeric host–guest complexes in solution between the CSA and the racemic substrates produced sufficient NMR signal splitting for the determination of enantiomeric excesses by 1H‐ or 19F‐NMR spectroscopy. Using of hydrophobic deuterated solvents was mandatory for obtaining good enantiodiscrimination, thus suggesting the importance of intermolecular hydrogen bonds in the stabilization of the complexes. The method was applied to the fast quantification of the enantiomeric purity of in‐process samples of S‐omeprazole. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
For biomedical studies, [Gln4]-neurotensin, which appears to be the naturally occurring form of neurotensin, was synthesized using a recently designed new resin for the Merrifield solid-phase synthesis of peptides, 4-(hydroxymethyl)phenylacetamidomethyl resin (PAM-resin). This synthesis was compared to the synthesis of [Gln4]-neurotensin by the use of oxymethyl-copoly-(styrene-divinylbenzene) as the solid support. The PAM-resin was superior, since the yield of [Gln4]-neurotensin was doubled and fewer purification steps were necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号