首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Goins  E Freire 《Biochemistry》1988,27(6):2046-2052
The thermal stability of cholera toxin free in solution and in association with its cell-surface receptor ganglioside GM1 has been studied by using high-sensitivity differential scanning calorimetry and differential solubility thermal gel analysis. In the absence of ganglioside GM1, cholera toxin undergoes two distinct thermally induced transitions centered at 51 and 74 degrees C, respectively. The low-temperature transition has been assigned to the irreversible thermal denaturation of the active A subunit. The second transition has been assigned to the reversible unfolding of the B subunit pentamer. The isolated B subunit pentamer exhibits a single transition also centered at 74 degrees C, suggesting that the attachment of the A subunit does not contribute to the stability of the pentamer. In the intact toxin, the A subunit dissociates from the B subunit pentamer at a temperature that coincides with the onset of the B subunit thermal unfolding. In aqueous solution, the denatured A subunit precipitates after dissociation from the B subunit pentamer. This phenomenon can be detected calorimetrically by the appearance of an exothermic heat effect. In the presence of ganglioside GM1, the B subunit is greatly stabilized as indicated by an increase of 20 degrees C in the transition temperature. In addition, ganglioside GM1 greatly enhances the cooperative interactions between B subunits. In the absence of ganglioside, each monomer within the B pentamer unfolds in an independent fashion whereas the fully ganglioside-bound pentamer behaves as a single cooperative unit. On the contrary, the thermotropic behavior of the A subunit is only slightly affected by the presence of increasing concentrations of ganglioside GM1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The tryptophan residues on cholera toxin and its A and B protomers have been modified by reaction with 2-nitrophenylsulfenyl chloride and 2,4-dinitrophenylsulfenyl chloride. Modification of the tryptophan residues of cholera toxin results in complete loss of toxicity measured in a skin permeability assay. Modification of cholera toxin and its B protomer results in the complete loss of binding activity toward membrane receptors, the ganglioside galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylceramide (GM1), and the oligosaccharide moiety of the ganglioside GM1. Modification of cholera toxin and its A protomer results in a complete loss of the ADP-ribosylation activity exhibited by their native counterparts. Modification of the A protomer results in no apparent change in its physical properties by sedimentation velocity in the ultracentrifuge or by gel filtration chromatography. Modification of the B protomer, either directly or when it remains a component part of the holo toxin structure, results in a change in its sedimentation value and its elution from gel filtration columns. The changes are compatible with a conversion of the B protomer from a pentameric moiety in aqueous solvents to its existence as a monomer unit, i.e. to the individual polypeptide chains comprising the native B pentamer. Thiolysis of the 2,4-dinitrophenylsulfenyl chloride derivative of the B protomer reaggregates the individual-polypeptide chains but does not return its ability to interact with GM1.  相似文献   

3.
B Goins  E Freire 《Biochemistry》1985,24(7):1791-1797
The interactions of cholera toxin and their isolated binding and active subunits with phospholipid bilayers containing the toxin receptor ganglioside GM1 have been studied by using high-sensitivity differential scanning calorimetry and steady-state and time-resolved fluorescence and phosphorescence spectroscopy. The results of this investigation indicate that cholera toxin associates with phospholipid bilayers containing ganglioside GM1, independent of the physical state of the membrane. In the absence of Ca2+, calorimetric scans of intact cholera toxin bound to dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles containing ganglioside GM1 result in a broadening of the lipid phase transition peak and a slight decrease (less than 5%) in the transition enthalpy. In the presence of Ca2+ concentrations sufficient to cause ganglioside phase separation, the association of the intact toxin to the membrane results in a significant decrease of enthalpy change for the lipid transition, indicating that under these conditions the toxin molecule perturbs the hydrophobic core of the bilayer. Calorimetric scans using isolated binding subunits lacking the hydrophobic toxic subunit did not exhibit a decrease in the phospholipid transition enthalpy even in the presence of Ca2+, indicating that the binding subunits per se do not perturb the hydrophobic core of the bilayer. On the other hand, the hydrophobic A1 subunit by itself was able to reduce the phospholipid transition enthalpy when reconstituted into DPPC vesicles. These calorimetric observations were confirmed by fluorescence experiments using pyrene phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
V Bhakuni  D Xie  E Freire 《Biochemistry》1991,30(20):5055-5060
The structural stability and domain structure of the pentameric B-subunit of cholera toxin have been measured as a function of different perturbants in order to assess the magnitude of the interactions within the B-subunits. For these studies, temperature, guanidine hydrochloride (GuHCl), and pH were used as perturbants, and the effects were measured by high-sensitivity differential scanning calorimetry, isothermal reaction calorimetry, fluorescence spectroscopy, and partial protease digestion. At pH 7.5 and in the absence of any additional perturbants, the thermal unfolding of the B-subunit pentamer is characterized by a single peak in the heat capacity function centered at 77 degrees C and characterized by a delta Hcal of 328 kcal/mol of B-subunit pentamer and delta Hvh/delta Hcal of 0.3. Lowering the pH down to 4 or adding GuHCl up to 2 M results in a decrease of the calorimetric enthalpy with no significant effect on the van't Hoff enthalpy. The transition enthalpy decreases in a sigmoidal fashion with pH, with an inflection point centered at pH 5.3. Isothermal titration calorimetric studies as a function of pH also report a transition centered at pH 5.3 and characterized by an enthalpy change of 27 kcal/mol of B-subunit pentamer at 27 degrees C. Below this pH, the enthalpy change for the unfolding transition is reduced to approximately 100 kcal/mol of B-subunit pentamer. Similar behavior is obtained with GuHCl. In this case, a first transition is observed at 0.5 M GuHCl and a second one at 3 M GuHCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Poly(propylene imine) dendrimers having four or eight primary amino groups and a StarburstTM (PAMAM) dendrimer having eight primary amino groups were used as core molecules, to which phenylisothiocyanate derivatized (PITC) galβ1-3galNAcβ1-4[sialic acidβ2-3]-galβ1-4glc (oligo-GM1) residues were covalently attached to yield multivalent oligosaccharides. The synthesis of the oligo-GM1-PITC derivatized dendrimers was monitored using high performance thin layer chromatography, infrared spectroscopy, sialic acid content, and mass spectroscopy. The ability of multivalent oligo-GM1-PITC dendrimers to inhibit the binding of 125I-labeled cholera toxin B subunit and the heat labile enterotoxin of E. coli to GM1-coated microtiter wells was determined. IC50s obtained for the oligo-GM1-PITC dendrimers, GM1, and the oligosaccharide moiety of GM1 indicated that the derivatized dendrimers inhibited binding of the choleragenoid and the heat labile enterotoxin to GM1-coated wells at a molar concentration five- to 15-fold lower than native GM1 and more than 1,000-fold lower than that of the free oligosaccharide. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
A competitive binding assay has been developed to determine how modifications to the B subunit of cholera toxin affect the binding affinity of the subunit for an ileal brush border membrane surface. The Ricinus communis120 agglutinin (RCA120) specifically binds to terminal beta-D-galactosyl residues such as those found in oligosaccharide side chains of glycoproteins and ganglioside GM1. Conditions were designed to produce binding competition between the B subunit of cholera toxin and the RCA120 agglutinin. Displacement of RCA120 from brush border surfaces was proportional to the concentration of B subunit added. This assay was used to study the effect of modification of B subunit on competitive binding affinity for the ileal brush border surface. The B subunit of cholera toxin was modified by coupling an average of five sulfhydryl groups to each B subunit molecule and by reaction of the SH-modified B subunit with liposomes containing a surface maleimide group attached to phosphatidylethanolamine. SH-modified B subunit was approximately 200-fold more effective than native B subunit in displacing lectin from brush border surfaces in the competitive binding assay. The enhanced binding activity was retained on covalent attachment of the modified B subunit to the liposome surface. We conclude that the B subunit of cholera toxin may be a useful targeting agent for directing liposomes to cell surfaces that contain a ganglioside GM1 ligand.  相似文献   

7.
Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli have been shown to differ somewhat in their ligand specificity and in the antigenicity of their binding sites. Therefore, the components of the oligosaccharide portion of GM1 bound by cholera toxin and the heat-labile enterotoxin of E. coli were identified by determining the concentration of GM1, derivatives of GM1, oligosaccharide isolated from GM1, or clustered oligosaccharide needed to inhibit toxin binding to GM1-coated plastic wells. The KIs for GM1, the C(7) sialosyl alcohol [corrected] of GM1, and ethanolamine-sialosyl-GM1 were similar (approximately 30-50 nM) for both toxins. N-Deacetylation of GM1 resulted in a small increase in KI; formation of the sialosyl methyl ester increased the KI 2-5 fold; loss of the terminal galactosyl residue (GM2) increased the KI by 10-15-fold; and removal of the sialosyl moiety (asialo-GM1) resulted in loss of inhibition of both toxins. Oligosaccharide isolated from GM1 had a KI for both toxins that was approximately 100-fold greater than that obtained for GM1 and approximately 1000-fold greater than that for a clustered oligosaccharide derivative having an average of 8 oligosaccharide residues (isolated from GM1) per molecule of poly-L-lysine. These results indicate that both toxins are functionally quite similar in their recognition of GM1 as a ligand in that each requires the free carboxyl group of sialic acid for optimum binding, does not need carbons 8 and 9 of the sialosyl moiety nor the acetyl groups associated with the sialic acid and galactosamine residues, and can have its binding to GM1 blocked by a nonlipid compound, i.e. oligo-GM1-poly-L-lysine.  相似文献   

8.
The conformational stability of Shiga toxin B-subunit (STxB), a pentameric protein from Shigella dysenteriae has been characterized by high sensitivity differential scanning calorimetry and circular dichroism spectroscopy under different solvent conditions. It is shown that the thermal folding/unfolding of STxB is a reversible process involving a highly cooperative transition between folded pentamer and unfolded monomers. The conformational stability of STxB is pH dependent and because of its pentameric nature is also concentration dependent. STxB is maximally stable in the pH range from 5 to 9 (Delta G upon unfolding is close to 13 kcal per mol of monomer at 25 degrees C), and its stability decreases both at lower and at higher pH values. The pH dependence of the Gibbs energy of stabilization between pH 2.5 and 5 is consistent with the change in the ionizable state of an average of four groups per monomer upon unfolding. Structural thermodynamic calculations show that the stabilization of the STxB pentamer is primarily due to the interactions established between monomers rather than intramonomer interactions. The folding of an isolated monomer into the conformation existing in the pentamer is unfavorable and expected to be characterized by a free-energy change upon folding in the order of 2.5 kcal mol(-1) at 25 degrees C. On the average, intersubunit interaction induced upon oligomerization of folded monomers should contribute close to -13.4 kcal per mol of monomer to bring the overall Gibbs energy to the experimentally determined value at this temperature.  相似文献   

9.
Heat-labile enterotoxin (LT) is part of the cholera toxin (CT) family and consists of a catalytic A subunit and a B pentamer that serves to recognize the oligosaccharide part of the GM1 ganglioside receptor. We report here the crystal structure of heat-labile enterotoxin in complex with the disaccharide portion of the Thomsen-Friedenreich (T-antigen) tumor marker. The toxin:carbohydrate complex is determined to 2.13 A resolution, yielding an R-factor of 18.5%. The T-antigen disaccharide, D-Gal-beta 1,3-GalNAc-Ser/Thr, is present in more than 85% of human carcinomas and monitoring its autoimmune response is used for the early detection of tumors. Insight into the molecular recognition of this tumor antigen by sugar binding proteins can benefit the development of a diagnostic tool for human carcinomas as well as a T-antigen directed anticancer drug delivery system.  相似文献   

10.
G Ramsay  E Freire 《Biochemistry》1990,29(37):8677-8683
The temperature and guanidine hydrochloride (GuHCl) dependence of the structural stability of diphtheria toxin has been investigated by high-sensitivity differential scanning calorimetry. In 50 mM phosphate buffer at pH 8.0 and in the absence of GuHCl, the thermal unfolding of diphtheria toxin is characterized by a transition temperature (Tm) of 54.9 degrees C, a calorimetric enthalpy change (delta H) of 295 kcal/mol, and a van't Hoff to calorimetric enthalpy ratio of 0.57. Increasing the GuHCl concentration lowers the transition temperature and the calorimetric enthalpy change. At the same time, the van't Hoff to calorimetric enthalpy ratio increases until it reaches a value of 1 at 0.3 M GuHCl and remains constant thereafter. At low GuHCl concentrations (0-0.3 M), the thermal unfolding of diphtheria toxin is characterized by the presence of two transitions corresponding to the A and B domains of the protein. At higher GuHCl concentrations (0.3-1 M), the A domain is unfolded at all temperatures, and only one transition corresponding to the B domain is observed. Under these conditions, the most stable protein conformation at low temperatures is a partially folded state in which the A domain is unfolded and the B domain folded. A general model that explicitly considers the energetics of domain interactions has been developed in order to account for the stability and cooperative behavior of diphtheria toxin. It is shown that this cooperative domain interaction model correctly accounts for the temperature location as well as the shape and area of the calorimetric curves. Under physiological conditions, domain-domain interactions account for most of the structural stability of the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A photoreactive, radioiodinatable derivative of the oligosaccharide (GM1OS) of ganglioside GM1 was synthesized as follows: GM1OS was generated from GM1 by ozonolysis and alkaline fragmentation, and reductively aminated to GM1OSNH2 (1-amino-1-deoxymonosialogangliotetraitol). The latter compound was then reacted with N-hydroxysuccinimidyl-4-azidosalicylic acid (NHS-ASA) to form GM1OSNH-ASA [1-(4-azidosalicoylamido)-1-deoxymonosialogangliotetraitol], which was radioiodinated and further purified. To test the [125I]GM1OSNH-IASA [1-(4-iodoazidosalicoylamido)-1-deoxymonosialogangliotetraitol+ ++] as a probe for ganglioside-binding proteins, the derivative was incubated with cholera toxin, which specifically binds GM1, followed by photolysis and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The probe only labelled the B or binding subunit of cholera toxin, but not the A or adenylyl cyclase activating subunit. Labelling was inhibited by excess GM1OS, but not by the oligosaccharides from gangliosides GD1a and GD1b. [125I]GM1OSNH-IASA and analogous oligosaccharide derivatives may be valuable probes for detecting ganglioside-binding proteins.  相似文献   

12.
The ability of Fuc-GM1 ganglioside to mimic the receptor function of GM1 for cholera toxin (CT) has been investigated. For this purpose, rat glioma C6 cultured cells were enriched with Fuc-GM1 and the responsiveness to CT was compared with that of cells enriched with GM1 ganglioside. Fuc-GM1 was taken up by cells as rapidly and to the same extent as GM1. When comparable amounts of ganglioside were associated, the cells enriched with Fuc-GM1 bound the same amount of 125I-CT as did cells enriched with GM1. Under conditions in which GM1- and Fuc-GM1-enriched cells bound comparable amounts of CT, the Fuc-GM1-treated cells accumulated virtually the same amount of cyclic AMP as did GM1-treated cells, and activation of adenylate cyclase was also similar. The lag time preceding the CT-induced cAMP accumulation was the same in Fuc-GM1- and GM1-enriched cells. High-sensitivity isothermal titration calorimetry (ITC) experiments showed that the association constants of CT with Fuc-GM1 or GM1 ganglioside were comparable (4 x 10(7) M-1 and 1.9 x 10(7) M-1, respectively, at 25 degrees C). Also, the association constants of the B-subunit pentamer with Fuc-GM1 or GM1 ganglioside were comparable (about 3 x 10(7) M-1 and 7 x 10(7) M-1, respectively, at 25 degrees C).  相似文献   

13.
Orientation of cholera toxin bound to model membranes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The orientation of cholera toxin bound to its cell-surface receptor, ganglioside GM1, in a supporting lipid membrane was determined by electron microscopy of negatively stained toxin-lipid samples. Image analysis of two dimensional crystalline arrays has shown previously that the B-subunits of cholera toxin orient at the membrane surface as a pentameric ring with a central channel (Reed, R. A., J. Mattai, and G.G. Shipley. 1987. Biochemistry. 26:824-832; Ribi, H. O., D. S. Ludwig, K. L. Mercer, G. K. Schoolnik, and R. D. Kornberg. 1988. Science (Wash, DC). 239:1272-1276). We recorded images of negatively stained cholera toxin and isolated B-pentamers oriented perpendicular to the lipid surface so that the pentamer ring is viewed from the side. The pentamer dimensions, estimated from the average of 100 molecules, are approximately 60 by 30 A. Images of side views of whole cholera toxin clearly show density above the pentamer ring away from the lipid layer. On the basis of difference maps between averages of side views of whole toxin and B-pentamers, this density above the pentamer has been identified as a portion of the A-subunit. The A-subunit may also extend into the pore of the pentamer. In addition, Fab fragments from a monoclonal antibody to the A-subunit were mixed with the toxin prior to binding to GM1. Density from the Fab was localized to the region of toxin above the pentamer ring confirming the location of the A-subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The solution dynamics of the oligosaccharide moiety of ganglioside GM1 have been determined by use of a combination of 1H rotating frame Overhauser effect measurements and restrained molecular dynamics simulations, It is found that the Galβ1-3 and NeuNAc moieties which are primarily recognized by cholera toxin both exhibit considerable torsional flexibility about their respective glycosidic linkages. A comparison with the bound state conformation of the ganglioside in association with cholera toxin B-pentamer, shows that a low energy conformation of the oligosaccharide, which closely approximates the globel minimum, is selected upon binding.  相似文献   

15.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

16.
The acidic glycosphingolipid, ganglioside GM1, which is the binding site for cholera toxin on many cell types, was identified by chemical and by flow cytometric analyses of mouse interleukin 3-dependent, bone marrow culture-derived mast cells (BMMC). Ganglioside GM1 and other acidic glycosphingolipids were isolated from BMMC by chloroform/methanol extraction and chromatography on DEAE-Sephadex and were analyzed by thin layer chromatography. The presence of ganglioside GM1 in the BMMC extract was demonstrated by its co-migration with ganglioside GM1 standard in thin layer chromatography and by the binding of peroxidase-labeled cholera toxin B subunit to both molecules. As assessed by fluorescence flow cytometric analysis of the binding of fluorescein-conjugated cholera toxin B subunit, the majority of BMMC expressed ganglioside GM1 on their surface, and the total presentation per cell increased as cells progressed from the G1 to S to G2 + M phases of the cell cycle. The addition of increasing amounts of cholera toxin starting with 0.08 microgram/ml to BMMC cultured in 50% WEHI 3-conditioned medium containing IL 3 for 48 hr caused the adhesion of BMMC to the tissue culture flasks to increase in a dose-related manner, from less than 1% adherent cells in cultures without toxin to a plateau value of approximately 17% adherent in the presence of 1.25 micrograms/ml of toxin. The histamine content of BMMC increased from 26.7 +/- 3.59 ng/10(6) cells (mean +/- SD, n = 4) for control cultures to 201 +/- 17.4 ng/10(6) cells (mean +/- SD, n = 4) for nonadherent cells and to 588 +/- 89.4 ng/10(6) cells (mean +/- SD, n = 4) for adherent cells after 48 hr of culture in 0.31 microgram/ml cholera toxin, which was the optimal dose for nonadherent and adherent populations. The content of another preformed intragranular mediator, beta-hexosaminidase, did not increase appreciably in the presence of cholera toxin (n = 3). The increase in the histamine content of BMMC after the addition of 0.31 microgram/ml cholera toxin was detectable at 4 hr, plateaued by 24 to 48 hr, and gradually declined over the next 6 days. Cholera toxin also augmented the histamine content of BMMC in the presence of purified synthetic IL 3. Preincubation of whole cholera toxin with purified ganglioside GM1 inhibited the histamine-augmenting effects of cholera toxin on BMMC, indicating that the effect was not due to a contaminant, and neither the A nor B subunit of cholera toxin alone increased the histamine content of BMMC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. A receptor-specific affinity chromatographic method for large-scale purification of cholera toxin is described. The receptor ganglioside for cholera toxin, GM1, is hydrolysed to lysoGM1 which is then covalently coupled, via stabilized Schiff's bases, to porous silica beads (Spherosil) onto which a layer of DEAE-dextran has been adsorbed and cross-linked before coupling. Columns of these Spherosil-DEAE-dextran-lysoGM1 beads, in contrast to particles derivatized with lysoGA1, bound the cholera toxin of Vibrio cholerae culture filtrates, after which the toxin could be eluted with the aid of an acid citrate buffer (pH 2.8). 2. The toxin-binding capacity was directly proportional to the amount of lysoGM1 in the column: 2.3 mg/mu mol lysoGM1. The yield of purified toxin after acid elution and pH neutralization was essentially quantitative (83-107%). 3. The affinity-purified toxin contained less than 5% impurities, but consisted of a mixture of predominantly intact holotoxin and B subunit protomer which could readily be separated by gel filtration on Sephadex G-100. 4. Scaling up of the technique was possible: a 1 kg column enabled us to treat 1000-1 cultures of V. cholerae and thus to isolate 20 g of cholera toxin per cycle.  相似文献   

18.
W X Song  D A Rintoul 《Biochemistry》1989,28(10):4194-4200
N-cis-Parinaroyl ganglioside GM1 and N-trans-parinaroyl ganglioside GM1 were synthesized and characterized by HPLC, TLC, component analysis, absorbance spectroscopy, and proton NMR spectroscopy. Steady-state fluorescence anisotropy of the purified compounds, incorporated into phosphatidylcholine liposomes, was measured in the presence and absence of choleragen (cholera toxin) and choleragenoid (cholera toxin B subunit). In gel-phase liposomes, anisotropy measurements indicated that the motion of the parinaroyl ganglioside was not affected by addition of choleragen or choleragenoid. In fluid-phase liposomes, however, addition of toxin resulted in increased anisotropy (decreased rotational motion) of the fluorescent gangliosides. This decreased motion was not observed with other parinaroyl lipid probes, such as phosphatidylcholine, glucosylceramide, or free fatty acids, indicating that the effect was due to specific ganglioside/toxin interactions. Varying the amount of ganglioside or the amount of toxin suggested that the effect of toxin on probe motion was saturable at approximately 1 choleragen (or choleragenoid) molecule/5 ganglioside molecules. These results are consistent with previous hypotheses regarding the ganglioside/choleragen interaction and indicate that parinaroyl ganglioside probes will be useful in elucidation of the molecular details of this interaction.  相似文献   

19.
Cholera toxin is a complex protein with a biologically active protein (A subunit) and a cell targeting portion (B subunit). The B subunit is responsible for specific cell binding and entry of the A subunit. One way to limit potential toxicity of the toxin after exposure is to introduce cellular decoys to bind the toxin before it can enter cells. In this study the ganglioside GM1, a natural ligand for cholera toxin, was incorporated into liposomes and the interaction between fluorescent B subunit and the liposome determined. Liposome membrane fluidity was determined to play a major role in the binding between liposomes and the cholera toxin B subunit. Liposomes with lower fluidity demonstrated greater binding with the B subunit. The findings from this study could have important implications on formulation strategies for liposome decoys of toxins.  相似文献   

20.
The binding specificities of cholera toxin andEscherichia coli heat-labile enterotoxin were investigated by binding of125I-labelled toxins to reference glycosphingolipids separated on thin-layer chromatograms and coated in microtitre wells. The binding of cholera toxin was restricted to the GM1 ganglioside. The heat-labile toxin showed the highest affinity for GM1 but also bound, though less strongly, to the GM2, GD2 and GD1b gangliosides and to the non-acid glycosphingolipids gangliotetraosylceramide and lactoneotetraosylceramide. The infant rabbit small intestine, a model system for diarrhoea induced by the toxins, was shown to contain two receptor-active glycosphingolipids for the heat-labile toxin, GM1 ganglioside and lactoneotetraosylceramide, whereas only the GM1 ganglioside was receptor-active for cholera toxin. Preliminary evidence was obtained, indicating that epithelial cells of human small intestine also contain lactoneotetraosylceramide and similar sequences. By computer-based molecular modelling, lactoneotetraosylceramide was docked into the active site of the heat-labile toxin, using the known crystal structure of the toxin in complex with lactose. Interactions which may explain the relatively high toxin affinity for this receptor were found.Abbreviations CT cholera toxin - CT-B B-subunits of cholera toxin - LT Escherichia coli heat-labile enterotoxin - hLT humanEscherichia coli heat-labile enterotoxin - pLT porcineEscherichia coli heat-labile enterotoxin - EI electron ionization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号