首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15N-labeled cyanide binding to methemoglobins in intact erythrocytes has been studied by 15N NMR. The addition of C15N? to human and dog hemoglobins in erythrocyte afforded hyperfine-shifted two 15N signals due to the C15N bound to ferric iron of the different heme-units. Single and three distinct signals were observed for rat and rabbit hemoglobins in erythrocyte. These C15N resonance positions are sensitive both to the structural difference in the hemoglobin subunits and to the variety of the animal sources. The C15N spectral difference between solution and intact hemoglobin cyanide is also discussed in relation to a possible change in the intra- and extracellular pH values.  相似文献   

2.
The global fold of human cannabinoid type 2 (CB2) receptor in the agonist‐bound active state in lipid bilayers was investigated by solid‐state 13C‐ and 15N magic‐angle spinning (MAS) NMR, in combination with chemical‐shift prediction from a structural model of the receptor obtained by microsecond‐long molecular dynamics (MD) simulations. Uniformly 13C‐ and 15N‐labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C?O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two‐dimensional 13Cα(i)? 13C?O(i) and 13C?O(i)? 15NH(i + 1) dipolar‐interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid‐state MAS NMR. Proteins 2014; 82:452–465. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Sequence specific resonance assignment of proteins forms the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone (1H, 15N, 13Cα and 13C′) resonances of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality experiment—(4,3)D-hnCOCANH and exploits the linear combinations of backbone (13Cα and 13C′) chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text). The resulted increased dispersion of peaks—which is different in sum (CA + CO) and difference (CA ? CO) frequency regions—greatly facilitates the analysis of the spectrum by resolving the problems (associated with routine assignment strategies) arising because of degenerate amide 15N and backbone 13C chemical shifts. Further, the spectrum provides direct distinction between intra- and inter-residue correlations because of their opposite peak signs. The other beneficial feature of the spectrum is that it provides: (a) multiple unidirectional sequential (ii + 1) 15N and 13C correlations and (b) facile identification of certain specific triplet sequences which serve as check points for mapping the stretches of sequentially connected HSQC cross peaks on to the primary sequence for assigning the resonances sequence specifically. On top of all this, the F 2F 3 planes of the spectrum corresponding to sum (CA + CO) and difference (CA ? CO) chemical shifts enable rapid and unambiguous identification of sequential HSQC peaks through matching their coordinates in these two planes (see the text). Overall, the experiment presented here will serve as an important backbone assignment tool for variety of structural and functional proteomics and drug discovery research programs by NMR involving well behaved small folded proteins (MW < 15 kDa) or a range of intrinsically disordered proteins.   相似文献   

4.
A triple resonance NMR experiment, denoted CO_H(N)CACB, correlates1HN and 13CO spins with the13C and13C spins of adjacent amino acids. Thepulse sequence is an out-and-back design that starts with1HN magnetization and transfers coherence viathe 15N spin simultaneously to the 13CO and13C spins, followed by transfer to the13C spin. Two versions of the sequence arepresented: one in which the 13CO spins are frequency labeledduring an incremented t1 evolution period prior to transfer ofmagnetization from the 13C to the13C resonances, and one in which the13CO spins are frequency labeled in a constant-time mannerduring the coherence transfer to and from the13C resonances. Because 13COand 15N chemical shifts are largely uncorrelated, thetechnique will be especially useful when degeneracy in the1HN-15N chemical shifts hindersresonance assignment. The CO_H(N)CACB experiment is demonstrated usinguniformly 13C/15N-labeled ubiquitin.  相似文献   

5.
13C nuclear magnetic resonance spectra have been obtained for variety of high-spin iron(III) porphyrin compounds and corresponding μ-oxo-bridged dimeric species. Large hyperfine shifts and significant line broadening are observed. The monomeric exhibit hyperfine shifts which are downfield with te exception of an upfield shift for the meso-carbon atom. Possible unpaired spin delocalization mechanisms and prospects for observing 13C NMR porphyrin resonances in high-spin ferrihemoproteins are discussed. Spectra reported here provide strategy for incorporation of 13C labels in hemoproteins either by biosynthetic or chemical means. The vinyl-CH2 resonances of iron(III) protoporphyrin IX located 260 parts per million downfield from tetramethylsilane are especially attractive from the standpoint of chemical labeling.  相似文献   

6.
The distribution of 15N and 14N compounds in cryofixed and resin embedded sections of soybean (Glycine max L) leaves was studied by SIMS microscopy. The results indicate that, with a mass resolution MM higher than 6000, images of the nitrogen distribution can be obtained from the mapping of the two secondary cluster ions 12C14N? and 12C15N?, in samples of both control and 15N-labeled leaves. The ionic images were clearly related to the histological structure of the organ, and allow the detection of 14N and 15N at the subcellular level. Furthermore, relative measurements of the 12C14N? and 12C15N? beams made possible the quantification of the 15N atom% in the various tissues of the leaf.  相似文献   

7.
Summary We recently proposed a novel four-dimensional (4D) NMR strategy for the assignment of backbone nuclei in spectra of 13C/15N-labelled proteins (Boucher et al. (1992) J. Am. Chem. Soc., 114, 2262–2264 and J. Biomol. NMR, 2, 631–637). In this paper we extend this approach with a new constant time 4D HCC(CO)NNH experiment that also correlates the chemical shifts of the aliphatic sidechain (1H and 13C) and backbone (1H, 13C and 15N) nuclei. It separates the sidechain resonances, which may heavily overlap in spectra of proteins with large numbers of similar residues, according to the backbone nitrogen and amide proton chemical shifts. When used in conjunction with a 4D HCANNH or HNCAHA experiment it allows, in principle, complete assignment of aliphatic sidechain and backbone resonances with just two 4D NMR experiments.  相似文献   

8.
The efficiency of cell-free protein synthesis combined with combinatorial selective 15N-labelling provides a method for the rapid assignment of 15N-HSQC cross-peaks to the 19 different non-proline amino-acid types from five 15N-HSQC spectra. This strategy was explored with two different constructs of the C-terminal domain V of the τ subunit of the Escherichia coli DNA polymerase III holoenzyme, τC16 and τC14. Since each of the five 15N-HSQC spectra contained only about one third of the cross-peaks present in uniformly labelled samples, spectral overlap was much reduced. All 15N-HSQC cross-peaks of the backbone amides could be assigned to the correct amino-acid type. Availability of the residue-type information greatly assisted the evaluation of the changes in chemical shifts observed for corresponding residues in τC16 vs. those in τC14, and the analysis of the structure and mobility of the C-terminal residues present in τC16 but not in τC14.  相似文献   

9.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   

10.
We investigated correlated µs-ms time scale motions of neighboring 13C′–15N and 13Cα13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100–400 s?1 range) for the 13C′–15N pairs and into the slow to intermediate regime for the 13Cα13Cβ pairs (about 150 s?1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα13Cβ pairs.  相似文献   

11.
Following an invasion of exotic annual grasses into California oak woodlands, grass species dominance shifted from native perennials to exotic annuals. In combination with other ecosystem and species characteristics, species-specific N preferences may influence species coexistence and dominance. If species N preferences follow dominance patterns in California oak woodlands, then the more dominant exotic grasses should prefer the most abundant inorganic soil N form (NH4+), while the subordinate native grasses should prefer the less available inorganic (NO3?) or organic (glycine) soil N forms. To investigate this prediction, we applied 15N-labeled NH4+, NO3?, and glycine to soil and measured % 15N recovery by two dominant annual grasses (Bromus diandrus and Bromus hordeaceus) and two subordinate perennial grasses (Elymus glaucus and Nassella pulchra). As expected, shoots of B. diandrus recovered more 15N-NH4+ (74%) than either 15N-NO3? (51%) or 15N-glycine (39%). B. diandrus also captured at least 3.2 times more 15N-NH4+ than subordinate grasses. Dominant B. hordeaceus, however, demonstrated no N form preferences. As hypothesized, shoots of subordinate E. glaucus and N. pulchra recovered 2.1–2.3 times more 15N-NO3? than 15N-NH4+ and increased %N by 4.8–5.7% in response to the application of 15N-NO3?. Both subordinate grasses did not prefer 15N-glycine over 15N-NH4+, suggesting that the importance of this N form in structuring species coexistence in California oak woodlands is minimal. These results support our theory that species N preferences follow dominance patterns in California oak woodlands. To further understand the role of these species-specific N preferences in structuring dominance, the importance of N form versus such characteristics as rooting distribution and species phenologies needs to be explored in the presence of interspecific competition.  相似文献   

12.
Eshetu  Zewdu  Högberg  Peter 《Plant and Soil》2000,222(1-2):109-117
We used the natural abundance of 15N in soils in forests, pastures and cultivated lands in the Menagesha and Wendo-Genet areas of Ethiopia to make inferences about the N cycles in these ecosystems. Since we have described the history of these sites based on variations in 13C natural abundance, patterns of δ15N and δ13C values were compared to determine if shifts of 15N correlate with shifts of vegetation. At Menagesha, a > 500-yr-old planted forest, we found δ15N values from −8.8 to +3.5‰ in litter, from −3.5 to +4.5‰ in 0–10 cm soil layer, and from −1.5 to +6.8‰ at >20 cm soil depth. The low δ15N in litter and surface mineral soils suggests that a closed N cycle has operated for a long time. At this site, the low δ13C of the surface horizon and the high δ13C of the lower soil horizons is clear evidence of a long phase of C4 grass dominance or cultivation of C4 crops before the establishment of the forest >500 years ago. In contrast, at Wendo-Genet, high δ13C of soils reveals that most of the land has been uncovered by forests until recently. Soil δ15N was high throughout (3.4–9.8‰), and there were no major differences between forested, cultivated and pasture soils in δ15N values of surface mineral soils. The high δ15N values suggest that open N cycles operate in the Wendo-Genet area. From the points of view of soil fertility management, it is interesting that tall forest ecosystems with relatively closed N cycling could be established on the fairly steep slopes at Menagesha after a long period of grass vegetation cover or cultivation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The 1H, 13C, and 15N resonances of FKBP when bound to the immunosuppressant, ascomycin, were assigned using a computer-aided analysis of heteronuclear double and triple resonance three-dimensional nmr spectra of [U-15N] FKBP/ascomycin and [U-15N, 13C] FKBP/ascomycin. In addition, from a preliminary analysis of two heteronuclear four-dimensional data sets, 3J coupling constants, amide exchange data, and the differences between the Cα and Cβ chemical shifts of FKBP to random coil values, the secondary structure of FKBP when bound to ascomycin was determined. The secondary structure of FKBP when bound to ascomycin in solution closely resembled the x-ray structure of the FKBP/FK506 complex but differed in some aspects from the structure of uncomplexed FKBP in solution. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The comprehensive structure determination of isotopically labeled proteins by solid-state NMR requires sequence-specific assignment of 13C and 15 N spectra. We describe several 2D and 3D MAS correlation techniques for resonance assignment and apply them, at 7.0 Tesla, to 13C and 15N labeled ubiquitin to examine the extent of resonance assignments in the solid state. Both interresidue and intraresidue assignments of the 13C and 15N resonances are addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields Ni-Ci–1 connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilizes the well resolved C chemical shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a 13C spin diffusion experiment, which exhibits 13C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts, we also performed a dipolar-mediated INADEQUATE experiment. By cross-referencing these spectra and exploiting the selective and extensive 13 C labeling approach, we assigned 25% of the amino acids in ubiquitin sequence-specifically and 47% of the residues to the amino acid types. The sensitivity and resolution of these experiments are evaluated, especially in the context of the selective and extensive 13C labeling approach.  相似文献   

15.
Abstract

An 15N-NMR study at natural abundance of 04/N3-substituted pyrimidine and C6-substituted purine ribonucleosides has shown that the exact location of the protecting group (substituent) on either 04 or N3 in pyrimidines has a strong influence on the electronic properties of the resultant pyrimidine system, mainly because of the change of state of hybridization of the N3-nitrogen. The basicity of N3 in some C4-substituted pyrimidines has been studied by following the 15N chemical shifts of protonated species in the presence of CF3COOH both in DMSO and in CH2Cl2 solution. A comparison of the basic character of N3 in C4-substituted pyrimidine and of N1 in C6-substituted purine nucleosides has shown that the magnitude of the 15N shift of N3 (or N1) upon protonation is governed mainly by the electronic properties of the heteroatom linked to C4 (or C6). It also clearly emerged in this study that there is very litle difference in basicities of N3 of pyrimidine and N1 of purine nucleosides despite the presence of the fused imidazole moiety in the latter.  相似文献   

16.
Sequence dependence of 13C and 15N chemical shifts in the receiver domain of CKI1 protein from Arabidopsis thaliana, CKI1RD, and its complexed form, CKI1RD?Mg2+, was studied by means of MD/DFT calculations. MD simulations of a 20–ns production run length were performed. Nine explicitly hydrated structures of increasing complexity were explored, up to a 40‐amino‐acid structure. The size of the model necessary depended on the type of nucleus, the type of amino acid and its sequence neighbors, other spatially close amino acids, and the orientation of amino acid NH groups and their surface/interior position. Using models covering a 10 and a 15 Å environment of Mg2+, a semi‐quantitative agreement has been obtained between experiment and theory for the V67?I73 sequence. The influence of Mg2+ binding was described better by the 15 Å as compared to the 10 Å model. Thirteen chemical shifts were analyzed in terms of the effect of Mg2+ insertion and geometry preparation. The effect of geometry was significant and opposite in sign to the effect of Mg2+ binding. The strongest individual effects were found for 15N of D70, S74, and V68, where the electrostatics dominated; for 13Cβ of D69 and 15N of K76, where the influences were equal, and for 13Cα of F72 and 13Cβ of K76, where the geometry adjustment dominated. A partial correlation between dominant geometry influence and torsion angle shifts upon the coordination has been observed. Proteins 2016; 84:686–699. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Summary Modern multidimensional double- and triple-resonance NMR methods have been applied to assign the backbone and side-chain 13C resonances for both equilibrium conformers of the paramagnetic form of rat liver microsomal cytochrome b 5. The assignment of backbone 13C resonances was used to confirm previous 1H and 15N resonance assignments [Guiles, R.D. et al. (1993) Biochemistry, 32, 8329–8340]. On the basis of short- and medium-range NOEs and backbone 13C chemical shifts, the solution secondary structure of rat cytochrome b 5 has been determined. The striking similarity of backbone 13C resonances for both equilibrium forms strongly suggests that the secondary structures of the two isomers are virtually identical. It has been found that the 13C chemical shifts of both backbone and side-chain atoms are relatively insensitive to paramagnetic effects. The reliability of such methods in anisotropic paramagnetic systems, where large pseudocontact shifts can be observed, is evaluated through calculations of the magnitude of such shifts.Abbreviations DANTE delays alternating with nutation for tailored excitation - DEAE diethylaminoethyl - DQF-COSY 2D double-quantum-filtered correlation spectroscopy - EDTA ethylenediaminetetraacetic acid - HCCH-TOCSY 3D proton-correlated carbon TOCSY experiment - HMQC 2D heteronuclear multiple-quantum correlation spectroscopy - HNCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons - HNCO 3D triple-resonance experiment correlating amide protons, amide nitrogens and carbonyl carbons - HNCOCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons via carbonyl carbons - HOHAHA 2D homonuclear Hartmann-Hahn spectroscopy - HOHAHA-HMQC 3D HOHAHA relayed HMQC - HSQC 2D heteronuclear single-quantum correlation spectroscopy - IPTG isopropyl thiogalactoside - NOESY 2D nuclear Overhauser enhancement spectroscopy - NOESY-HSQC 3D NOESY relayed HSQC - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP trimethyl silyl propionate  相似文献   

18.
The15N resonances in reduced and oxidizedChromatium vinosum high-potential iron protein have been assigned by use of1H-1H COSY spectra and1H-15N HMQC, HMQC-COSY, and HMQC-NOESY spectra. Unambiguous assignment of 70 of 85 backbone15N resonances in the reduced protein and 62 of 85 resonances in the oxidized protein are made, as are 12 of 21 side-chain15N resonances.  相似文献   

19.
Abstract

15N uniformly labeled lac repressor and lac repressor headpiece were prepared. 15N NMR spectra of lac repressor were shown resolution inadequate for detailed study while the data showed that the 15N labeled N-terminal part of the protein is quite suitable for this type of study allowing future investigation of the specific interaction of the lac repressor headpiece with the lac operator. We report here the total assignment of proton 1H and nitrogen 15NH backbone resonances of this headpiece in the free state. Assignments of the 15N resonances of the protein were obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC nuclear Overhauser and relayed HMQC-HOHAHA spectroscopy. More than 80 per cent of residues were assigned by their 15NH(i)-N1H(i+1) and 15NH(i)-N1(i-1) connectivities. Values of the 3JNHα splitting for 39 of the 51 residues of the headpiece were extracted from HMQC and HMQC-J. The observed 15NH(i)-CβH cross peaks and the 3JNHα coupling constants values are in agreement with the three α-helices previously described [Zuiderweg, E.R.P., Scheek, R.M., Boelens, R., van Gunsteren, W.F. and Kaptein, R., Biochimie 67, 707 (1985)]. The 3JNHα coupling constants can be now used for a more confident determination of the lac repressor headpiece. From these values it is shown that the geometry of the ends of the second and third α-helices exhibit deviation from the canonical α-helix structure. On the basis of NOEs and 3JNHα values, the geometry of the turn of the helix-turn-helix motif is discussed.  相似文献   

20.
A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to directly determine the flow of 15NO3 ? to plants, algae, and sediments, with unaccounted for 15N assumed to be denitrified. During the summer, plant and algal uptake accounted for 42%, of the added 15NO3 ? in oxbow 1, less than 1% remained in the water column and 57% was unaccounted for. In oxbow 2 during the summer, plant and algal uptake accounted for 63% of the added 15NO3 ?, with <1% remaining in the water column and 38% unaccounted for. During the early spring, plant and algal uptake were much lower in both oxbows, ranging from 0.05 to 13.3% of the 15N added, with 97 and 87% was unaccounted for in oxbow 1 and 2, respectively. The amount of unaccounted for 15N was equivalent to estimated areal denitrification rates of 12 and 6 mg N m?2 d?1 in the summer and 78 and 15 mg N m?2 d?1 in the spring, in oxbow 1 and oxbow 2, respectively. However, the uncertainty of these estimates is high as it was difficult to detect accumulation of 15N in the sediments which could have accounted for a very large percentage of the added 15N. Our results suggest that the two relict oxbow wetlands are sinks for NO3 ? during both summer and spring but that the pathways of removal vary with plants and algae playing a major role in summer but not in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号