首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protracted absence of muscle activation initiates complex cellular and molecular reactions aimed at restoring functional neuromuscular transmission and preventing degenerative processes. A central aspect of these reactions is the sprouting of intramuscular nerves in the vicinity of inactivated muscle fibers. Sprouts emerging from terminal nerve branches and nodes of Ranvier can reestablish functional contacts with inactive muscle fibers, and this is an essential restorative process in pathological conditions of the neuromuscular system. Due to their rapid upregulation in inactive skeletal muscle fibers and their ability to induce nerve sprouting in adult muscle, insulin-like growth factors (IGFs) are candidate signaling molecules to promote restorative reactions in the neuromuscular system. In this study we have exploited the high affinity and specificity of IGF-binding protein 4 (IGF-BP4) and IGF-BP5 for IGF1 and IGF2 to determine whether these growth factors are involved in the nerve sprouting reaction in paralyzed skeletal muscle. In tissue culture experiments with sensory- and motoneurons we demonstrate that the neurite promoting activity of IGF1 is blocked by IGF-BP4, and that a similar IGF-BP-sensitive activity is detected in muscle extracts from paralyzed, but not from control muscle. In in vivo experiments, we show that local delivery of IGF-BP4 to Botulinum toxin A-paralyzed skeletal muscle effectively prevents nerve sprouting in that muscle. Our findings indicate that muscle IGFs play an essential role in intramuscular nerve sprouting. In addition, these findings suggest that IGFs are major signaling factors from inactivated muscle to promote local restorative reactions, including interstitial cell proliferation and nerve sprouting.  相似文献   

2.
Galectin-1 is a soluble carbohydrate-binding protein with a particularly high expression in skeletal muscle. Galectin-1 has been implicated in skeletal muscle development and in adult muscle regeneration, but also in the degeneration of neuronal processes and/or in peripheral nerve regeneration. Exogenously supplied oxidized galectin-1, which lacks carbohydrate-binding properties, has been shown to promote neurite outgrowth after sciatic nerve sectioning. In this study, we compared the expression of galectin-1 mRNA and immunoreactivity in innervated and denervated mouse and rat hind-limb and hemidiaphragm muscles. The results show that galectin-1 mRNA expression and immunoreactivity are up-regulated following denervation. The galectin-1 mRNA is expressed in the extrasynaptic and perisynaptic regions of the muscle, and its immunoreactivity can be detected in both regions by Western blot analysis. The results are compatible with a role for galectin-1 in facilitating reinnervation of denervated skeletal muscle.  相似文献   

3.
In partially denervated rodent muscle, terminal Schwann cells (TSCs) located at denervated end plates grow processes, some of which contact neighboring innervated end plates. Those processes that contact neighboring synapses (termed "bridges") appear to initiate nerve terminal sprouting and to guide the growth of the sprouts so that they reach and reinnervate denervated end plates. Studies conducted prior to knowledge of this potential involvement of Schwann cells showed that direct muscle stimulation inhibits terminal sprouting following partial denervation (Brown and Holland, 1979). We have investigated the possibility this inhibition results from an alteration in the growth of TSC processes. We find that stimulation of partially denervated rat soleus muscle does not alter the length or number of TSC processes but does reduce the number of TSC bridges. Stimulation also reduces the number of TSC bridges that form between end plates during reinnervation of a completely denervated muscle. The nerve processes ("escaped fibers") that normally grow onto TSC processes during reinnervation are also reduced in length. Therefore, stimulation alters at least two responses to denervation in muscles: (1) the ability of TSC processes to form or maintain bridges with innervated synaptic sites, and (2) the growth of axons along processes extended by TSCs.  相似文献   

4.
1. From denervation studies the trophic influence of the motor nerve on the muscle cell is well documented while little is known about the influence of the muscle on the nerve. Sectioning the axon invariably destroys the nerve terminals and produces nerve degeneration products which themselves may affect nerve and muscle properties. With regard to those difficulties we believe that the botulinal neurotoxins (BoTx) are valuable complements to denervation since they selectively interrupt impulse transmission across the synapse without damaging its morphology. 2. Paralysis of mouse or rat skeletal muscle in vivo with BoTx type A causes marked growth of motor nerve terminals. The sprouting terminals are rich in large dense-core synaptic vesicles containing various neuropeptides and they spontaneously release large quanta of ACh. Thus, it appears that paralysis by BoTx is a strong stimulus for motor nerve growth and the delivery of "trophic" substances to the nerve terminals. 3. Postsynaptically, in extrajunctional areas, paralysis by BoTx induces all the changes observed following denervation, i.e. atrophy, appearance of extra-junctional ACh receptors, TTX-resistant action potentials, a fall of resting membrane potential, fibrillation potentials and the disappearance of extrajunctional acetylcholinesterase activity. Endplate properties are, however, largely maintained. 4. BoTx blockade delays and prevents the retraction of polyneuronal innervation and motoneurone death during development. This supports the suggestion that the paralysed muscle secretes factors essential for growth and for the survival of motoneurones. 5. Like denervated muscle, BoTx paralysed ones, express a high endocytotic activity restricted to a segment in the endplate region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Spontaneous sproutings can be observed in end plates from normal adult vertebrate muscles and motor end plates develop increased growth signs and sprouts when target muscle cells become less active or paralysed. Nevertheless, very little is known about where in the motor nerve terminal arborization spontaneous and experimentally induced sprouts originate, their similarities and differences and also about their final maturation or elimination. In this study we investigate the topological properties of both spontaneous and alpha-bungarotoxin-induced sprouts (during different periods of intoxication and after recovery) along the motor nerve terminal branches of the Levator auris longus muscle of Swiss mice (between 48-169 day old). Muscles were processed for immunocytochemistry to simultaneously detect postsynaptic AChRs and axons. This procedure permits us to make an accurate identification of the fine sprouts and a morphometric study of the presynaptic branching pattern profile in control muscles, during the toxin action and after recovery from paralysis. The results show that in normal muscles, the initial and trunk segments (those between branch points) of the terminal arborization sprouted proportionally more branches when taking their relative lengths into account than the distal free-end segments. In contrast, every micrometer of alpha-bungarotoxin-treated muscles throughout the full terminal arborization have the same probability of generating a sprout. Moreover, the toxin-induced sprouts can consolidate as new branches once recovered from the paralysis without changing the total length of the nerve terminal arborization.  相似文献   

6.
Summary The sternocostalis muscle of the rat was examined at one to five days after partial denervation and levels of terminal sprouting were assessed.The removal of one intercostal nerve caused localised degeneration which did not extend more than a few muscle fibres deep into the field of distribution of the adjacent nerve. Terminal sprouting was clearly seen at 24 h after operation and did not appear to develop further up to five days.There was no difference in the sprouting responses to section of either intercostal nerve 2, 4 or 5. There was, however, a decrease in the response with increasing distance from the cut nerve. No sprouting response was observed in the contralateral muscle.Comparison of sprouting levels of B and C type end plates revealed a greater percentage of C type end plates with sprouts. However, the response of B type end plates, considered in relation to the levels of spontaneous sprouting, was greater than that of C type end plates.  相似文献   

7.
Denervation of skeletal muscle results in striking connective tissue remodelling in junctional areas of muscle. Since extracellular matrix molecules mediate axonal growth and synaptic differentiation, it is likely that the interstitial cells and matrix molecules that accumulate near synaptic sites after denervation influence the regrowth and regeneration of synaptic connections. The experiments presented here addressed the question of whether the junctional connective tissue in developing bullfrog skeletal muscle was also specialized in its cellular and molecular composition. Denervation responses of muscle, such as extrajunctional sensitivity to acetylcholine, often reproduce the characteristics of developing muscle during synaptogenesis. In developing muscle, the distribution of interstitial cells was nonuniform during the period of muscle fibre birth and synaptogenesis. Interstitial cells were concentrated near synaptic sites as in denervated adult muscle. Unlike denervated adult muscle, there were no junctional accumulations of fibronectin or tenascin, matrix molecules produced by interstitial cells, in developing muscles. These results demonstrate that the junctional connective tissue in developing muscle is identified by a high density of interstitial cells that may play a role in the identification and formation of synaptic sites. Further, the junctional matrix environment of developing muscle is distinct from the matrix remodelling that occurs in response to denervation, suggesting that the matrix production by interstitial cells during development is regulated differently from that after denervation of the neuromuscular junction.  相似文献   

8.
During development of the avian neuromuscular system, lumbar spinal motoneurons (MNs) innervate their muscle targets in the hindlimb coincident with the onset and progression of MN programmed cell death (PCD). Paralysis (activity blockade) of embryos during this period rescues large numbers of MNs from PCD. Because activity blockade also results in enhanced axonal branching and increased numbers of neuromuscular synapses, it has been postulated that following activity blockade, increased numbers of MNs can gain access to muscle-derived trophic agents that prevent PCD. An assumption of the access hypothesis of MN PCD is the presence of an activity-dependent, muscle-derived sprouting or branching agent. Several previous studies of sprouting in the rodent neuromuscular system indicate that insulin-like growth factors (IGFs) are candidates for such a sprouting factor. Accordingly, in the present study we have begun to test whether the IGFs may play a similar role in the developing avian neuromuscular system. Evidence in support of this idea includes the following: (a) IGFs promote MN survival in vivo but not in vitro; (b) neutralizing antibodies against IGFs reduce MN survival in vivo; (c) both in vitro and in vivo, IGFs increase neurite growth, branching, and synapse formation; (d) activity blockade increases the expression of IGF-1 and IGF-2 mRNA in skeletal muscles in vivo; (e) in vivo treatment of paralyzed embryos with IGF binding proteins (IGF-BPs) that interfere with the actions of endogenous IGFs reduce MN survival, axon branching, and synapse formation; (f) treatment of control embryos in vivo with IGF-BPs also reduces synapse formation; and (g) treatment with IGF-1 prior to the major period of cell death (i.e., on embryonic day 6) increases subsequent synapse formation and MN survival and potentiates the survival-promoting actions of brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) administered during the subsequent 4- to 5-day period of PCD. Collectively, these data provide new evidence consistent with the role of the IGFs as activity-dependent, muscle-derived agents that play a role in regulating MN survival in the avian embryo. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 379–394, 1998  相似文献   

9.
Tam  Siu Lin  Gordon  Tessa 《Brain Cell Biology》2003,32(5-8):961-974
This review considers the relative roles of sprouting stimuli, perisynaptic Schwann cells and neuromuscular activity in axonal sprouting at the neuromuscular junction in partially denervated muscles. A number of sprouting stimuli, including insulin-like growth factor II, which are generated from inactive muscle fibers in partially denervated and paralyzed skeletal muscles, has been considered. There is also evidence that perisynaptic Schwann cells induce and guide axonal sprouting in adult partially denervated muscles. Excessive neuromuscular activity significantly reduces bridging of perisynaptic Schwann cell processes between innervated and denervated endplates and thereby inhibits axonal sprouting in partially denervated adult muscles. Elimination of neuromuscular activity is also detrimental to sprouting in these muscles, suggesting that calcium influx into the nerve is crucial for axonal sprouting. The role of neuromuscular activity in axonal sprouting will be considered critically in the context of the roles of sprouting stimuli and perisynaptic Schwann cells in the process of axonal sprouting.  相似文献   

10.
11.
Clenbuterol, a β2‐adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin‐like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol‐induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol‐induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
《The Journal of cell biology》1994,127(5):1435-1445
Denervation of skeletal muscle results in dramatic remodeling of the cellular and molecular composition of the muscle connective tissue. This remodeling is concentrated in muscle near neuromuscular junctions and involves the accumulation of interstitial cells and several extracellular matrix molecules. Given the role of extracellular matrix in neurite outgrowth and synaptogenesis, we predict that this remodeling of the junctional connective tissue directly influences the regeneration of the neuromuscular junction. As one step toward understanding the role of this denervation-induced remodeling in synapse formation, we have begun to look for the signals that are involved in initiating the junctional accumulations of interstitial cells and matrix molecules. Here, the role of muscle inactivity as a signal was examined. The distributions of interstitial cells, fibronectin, and tenascin were determined in muscles inactivated by presynaptic blockade of muscle activity with tetrodotoxin. We found that blockade of muscle activity for up to 4 wk produced neither the junctional accumulation of interstitial cells nor the junctional concentrations of tenascin and fibronectin normally present in denervated frog muscle. In contrast, the muscle inactivity induced the extrajunctional appearance of two synapse-specific molecules, the acetylcholine receptor and a muscle fiber antigen, mAb 3B6. These results demonstrate that the remodeling of the junctional connective tissue in response to nerve injury is a unique response of muscle to denervation in that it is initiated by a mechanism that is independent of muscle activity. Thus connective tissue remodeling in denervated skeletal muscle may be induced by signals released from or associated with the nerve other than the evoked release of neurotransmitter.  相似文献   

13.
Summary Partial denervation of the sternocostalis muscle was achieved by sectioning two out of five of its intercostal nerves. The terminal sprouting response was markedly increased compared to that found following section of only one nerve. The increase in the response was greater for B type than for C type end plates, although B type end plates appear unable to produce terminal sprouts longer than 20 m after partial denervation.Double nerve section allowed terminal sprouts from C type end plates to increase in length up to three days, after which time they appeared to retract. It is postulated that the onset of collateral sprouting resulted in reinnervation of empty end plate sites and hence removed the target for terminal sprouts.  相似文献   

14.
The insulin-like growth factors (IGF-I and IGF-II), working through the type 1 IGF receptor (IGF-1R), are key mediators of skeletal muscle fiber growth and hypertrophy. These processes are largely dependent on stimulation of proliferation and differentiation of muscle precursor cells, termed myoblasts. It has not been rigorously determined whether the IGFs can also mediate skeletal muscle hypertrophy in a myoblast-independent fashion. Similarly, although the phosphatidylinositol 3-kinase (PI3K) and calcineurin signaling pathways have been implicated in skeletal muscle hypertrophy, these pathways are also involved in skeletal myoblast differentiation. To determine whether the IGFs can stimulate skeletal muscle hypertrophy in a myoblast-independent fashion, we developed and validated a retroviral expression vector that mediated overexpression of the human IGF-1R in rat L6 skeletal myotubes (immature muscle fibers), but not in myoblasts. L6 myotubes transduced with this vector accumulated significantly higher amounts of myofibrillar proteins, in a ligand- and receptor-dependent manner, than controls and demonstrated significantly increased rates of protein synthesis. Stimulation of myotube hypertrophy was independent of myoblast contributions, inasmuch as these cultures did not exhibit increased levels of myoblast proliferation or differentiation. Experiments with PI3K and calcineurin inhibitors indicated that myoblast-independent myotube hypertrophy was mediated by PI3K, but not calcineurin, signaling. This study demonstrates that IGF can mediate skeletal muscle hypertrophy in a myoblast-independent fashion and suggests that muscle-specific overexpression of the IGF-1R or stimulation of its signaling pathways could be used to develop strategies to ameliorate muscle wasting without stimulating proliferative pathways leading to carcinogenesis or other pathological sequelae.  相似文献   

15.
Cell accumulation in the junctional region of denervated muscle   总被引:7,自引:6,他引:1       下载免费PDF全文
If skeletal muscles are denervated, the number of mononucleated cells in the connective tissue between muscle fibers increases. Since interstitial cells might remodel extracellular matrix, and since extracellular matrix in nerve and muscle plays a direct role in reinnervation of the sites of the original neuromuscular junctions, we sought to determine whether interstitial cell accumulation differs between junctional and extrajunctional regions of denervated muscle. We found in muscles from frog and rat that the increase in interstitial cell number was severalfold (14-fold for frog, sevenfold for rat) greater in the vicinity of junctional sites than in extrajunctional regions. Characteristics of the response at the junctional sites of frog muscles are as follows. During chronic denervation, the accumulation of interstitial cells begins within 1 wk and it is maximal by 3 wk. Reinnervation 1-2 wk after nerve damage prevents the maximal accumulation. Processes of the cells form a multilayered veil around muscle fibers but make little, if any, contact with the muscle cell or its basal lamina sheath. The results of additional experiments indicate that the accumulated cells do not originate from terminal Schwann cells or from muscle satellite cells. Most likely the cells are derived from fibroblasts that normally occupy the space between muscle fibers and are known to make and degrade extracellular matrix components.  相似文献   

16.
The insulin-like growth factors (IGF) or somatomedins (Sm) are a family of low molecular weight circulating growth factors which have a major, but not absolute, dependence on GH, and have been shown to stimulate body growth and skeletal metabolism in vivo. They are thus considered to mediate the effects of GH on skeletal growth. In humans, the family consists of two well-characterized forms--IGF-I or SmC (a basic peptide) and IGF-II (a "neutral" peptide)--as well as perhaps two less well characterized forms--SmA (a neutral peptide) and an acidic insulin-like activity (ILA pI 4.8). Similar IGF/Sm species have been found and well-characterized in rat serum. Some higher mol wt forms also exist in tissues and body fluids and may represent possible precursor forms. On the basis of in vitro, clinical and in vivo evidence it has been postulated that IGF-I is the primary growth factor in the adult, whilst IGF-II is probably a major foetal growth factor. In vitro the IGF/Sms have a variety of effects including (1) acute insulin-like metabolic actions, which are observed primarily in insulin target tissues and are initiated largely at insulin receptors, and (2) longer term effects, associated with cell growth and skeletal tissue metabolism, and which occur in traditionally non-insulin target tissues, primarily via IGF/Sm receptors. These observations, together with the circumstantial clinical evidence favouring a close association between IGF levels and growth status, clearly indicate a role for IGF/Sms in growth regulation. This concept is now fully supported by the demonstration that IGF-I infused into hypophysectomized (GH-deficient) rats results in increased growth and skeletal metabolism. The physiological regulation of the expression of net IGF activity in vivo is complex and is controlled by the following three determinants: the levels of IGFs, the levels of the specific carrier-proteins and the levels of IGF inhibitors. Both IGFs and their carrier-proteins are influenced by the GH status of the animal as well as by other hormones, nutritional status and chronic illness. Little is known yet about the control of the various IGF inhibitors that have been described. Of importance, however, is the general concept that normal growth is dependent on an adequate balance between all three determinants and that some regard must be had for the contribution of each in determining the overall potential for growth under given circumstances.  相似文献   

17.
Transferrin or a transferrin-like protein, with ability to stimulate myogenesis and terminal differentiation in vitro, is found in fast chicken muscle during embryonic development. After hatching, however, transferrin is no longer accumulated or is only weakly accumulated by fast muscles like the pectoralis major and the posterior latissimus dorsi but continues to be accumulated by slow muscles like the anterior latissimus dorsi. In congenic lines of chickens bearing the gene for muscular dystrophy, however, adult fast muscles do not lose the ability to accumulate transferrin. While transferrin is found selectively in adult normal and dystrophic muscle it does not appear to be synthesized by muscle cells. Immunocytochemical localization shows that transferrin is accumulated not so much by muscle fibers as it is by single cells in the muscle interstitial space. The relationship between transferrin presence and growth patterns in adult skeletal muscle is not currently understood but evidence suggests that transferrin stimulation of myogenesis observed in vitro may be mediated in vivo by non-muscle cells dwelling within the muscle interstitial space. These cells may act as transferrin-uptake sources for subsequent satellite cell stimulation.  相似文献   

18.
After the partial denervation or paralysis of a muscle, the remaining motor axon terminals may sprout fine, neuritic processes (terminal sprouts) which escape the endplate region of the neuromuscular junction. We previously identified a muscle-derived, protein antigen of 56,000 daltons (56 kD) which plays a necessary role in terminal sprouting. A panel of monoclonal antibodies have been produced against the 56-kD antigen, some of which also partially suppress motor axon terminal sprouting. These monoclonal antibodies define at least two different epitopes upon the surface of the antigen, one of which is necessary for it to effect its biological role in vivo.  相似文献   

19.
Although astrocytic gliosis has been linked to failure of axonal regeneration in the adult mammalian CNS, its role is not fully established. We used an in vitro assay to investigate the role of reactive astrocytes and macrophages in influencing axonal growth in the lesioned adult rat optic nerve. Soon after optic nerve transection, the nonpermissive nature of the optic nerve is altered to a permissive state near the lesion. This may account for injury-induced axonal sprouting and may contribute to the failure of these sprouts to elongate beyond the site of the lesion in vivo. We provide evidence that this lesion-induced change in the axonal growth-promoting properties of the CNS near the lesion may be produced by mononuclear phagocytes. In addition, several months after optic nerve transection, the degenerated nerves, which consist mainly of astrocytes and lack myelin, i.e., astrocytic "scar" tissue, are a good substrate for neurite growth. Taken together, these results suggest that in this in vitro system, substantial inhibitory effects are not associated with regions of astrocytic gliosis and that the nonpermissive nature of the CNS white matter can be modified by macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号