首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Nuclear matrix attachment regions (MARs) are thought to influence the expression of the flanking genes. TM2, a new DNA fragment isolated from tobacco, can bind with the rice nuclear matrix in vitro. In this study, we investigated the effect of TM2 on transgene expression under the control of three different promoters in stably transformed rice calli and plants. The presence of TM2 flanking the transgene increased the expression of constructs based on the constitutive CaMV 35S and maize ubiquitin gene promoters in both resistant calli and transformed plants. The GUS expression directed by the photosynthetic-tissue-specific PNZIP promoter was also increased in photosynthetic tissues of transformants. However, TM2 did not change the gene expression pattern controlled by the PNZIP promoter. The effect of TM2 in transgenic plants was stronger than that in transgenic calli based on all three promoters. Our results indicate that TM2, as a novel strong MAR, can be used to increase the transgene expression levels in the whole plant or in particular tissues of monocotyledons.  相似文献   

4.
Matrix attachment regions (MARs) are binding sites for nuclear scaffold proteins in vitro, and are proposed to mediate the attachment of chromatin to the nuclear scaffold in vivo. Previous reports suggest that MAR elements may stabilize transgene expression. Here, we tested the effects of two maize MAR elements (P-MAR from the P1-rr gene, and Adh1-MAR from the adh1 gene) on the expression of a gusA reporter gene driven by three different promoters: the maize p1 gene promoter, a wheat peroxidase (WP) gene promoter, or a synthetic promoter (Rsyn7). The inclusion of P-MAR or Adh1-MAR on P::GUS transgene constructs did not reduce variation in the levels of GUS activity among independent transformation events, nor among the progeny derived from each event. The Adh1-MAR element did not affect GUS expression driven by the WP promoter, but did modify the spatial pattern of expression of the Rsyn7::GUS transgene. These results indicate that, in transgenic maize plants, the effects of MAR elements can vary significantly depending upon the promoter used to drive the transgene.  相似文献   

5.
The intergenic regions of banana bunchy top virus (BBTV) DNA-1 to -5 were fused to the green fluorescent protein (GFP) and uidA reporter genes and assessed for promoter activity in transgenic banana (Musa spp. cv. Bluggoe). Promoter activity associated with the BBTV-derived promoters was transgene dependent with greatest activity observed using the GFP reporter. The BBTV promoters (BT1 to BT5) directed expression primarily in vascular-associated cells, although levels of activity varied between individual promoters. Promoters BT4 and BT5 directed the highest levels of GFP expression, while activity from BT1, BT2 and BT3 promoters was considerably weaker. Intron-mediated enhancement, using the maize polyubiquitin 1 (ubi1) intron, generated a significant increase in GUS expression directed by the BBTV promoters in transgenic plants. Received: 17 May 1999 / Revision received: 3 November 1999 / Accepted: 4 November 1999  相似文献   

6.
7.
GUS (uidA) reporter gene expression for two sugarcane polyubiquitin promoters, ubi4 and ubi9, was compared to expression from the maize Ubi-1 promoter in stable transgenic rice (only ubi9) and sugarcane (ubi4 and ubi9). Ubi9 drove high-level GUS expression, comparable to the maize Ubi-1 promoter, in both callus and regenerated plants of rice transformed by Agrobacterium. This high level expression was inherited in R1 plants. Expression from ubi4 and ubi9 was quite high in sugarcane callus transformed via particle bombardment. Expression dropped to very low or undetectable levels in the resulting plants; this drop in expression resulted from PTGS. PTGS in regenerated sugarcane plants also occurred with the maize Ubi-1 promoter. In sugarcane callus, ubi4 was HS inducible, but ubi9 was not. This physiological difference corresponds to a MITE insertion that is present in the putative HSEs of ubi9 but not present in ubi4.  相似文献   

8.
9.
The stable transformation of embryogenic tissues of Pinus nigra Arn., cell line E104, has been achieved using a biolistic approach. The introduced DNA consisted of the uidA reporter gene under the control of the double CaMV 35S promoter and the nptII selection gene controlled by the single CaMV 35S promoter. Three days after bombardment, putative transformed tissues were selected for continued proliferation on a medium containing 20 mg geneticin l−1. Resistant embryogenic tissue recovery required 10–12 weeks. The integration of the nptII and uidA genes was confirmed by both histochemical/fluorimetric GUS assays and PCR amplification of the inserts in the five geneticin resistant sub-lines of line E104. The activity of the uidA reporter gene in transgenic, embryogenic tissue lines was stable and could be detected after one year of culture. Somatic embryo maturation was, however, poor and no plantlet regeneration could be obtained.  相似文献   

10.
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5′ untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.  相似文献   

11.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

12.
13.
14.
Traditional method of Agrobacterium‐mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium‐mediated genetic transformation of S. viridis using spike dip. Pre‐anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β‐glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5‐day‐old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike‐dip medium supplemented with 0.025% Silwet L‐77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β‐glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron‐interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high‐throughput transformation and potentially facilitates translational research in a monocot model plant.  相似文献   

15.
16.

Key message

Porteresia ubiquitin 5′ regulatory region drives transgene expression in monocots and dicots.

Abstract

Ubiquitin promoters are promising candidates for constitutive transgene expression in plants. In this study, we isolated and characterized a novel 5′ regulatory sequence of a ubiquitin gene from Porteresia coarctata, a stress-tolerant wild grass species. Through functional analysis in heterologous plant systems, we have demonstrated that full length (Port Ubi2.3) or truncated sequence (PD2) of the isolated regulatory fragment can drive constitutive expression of GUS in monocots and/or dicots. In silico analysis of Port Ubi2.3 has revealed the presence of a 640 bp core promoter region followed by two exons and two introns with numerous putative cis-acting sites scattered throughout the regulatory region. Transformation and expression studies of six different deletion constructs in rice, tobacco and sugarcane revealed that the proximal intron has an enhancing effect on the activity of the core promoter in both monocots and dicots, whereas, Port Ubi2.3 was able to render strong expression only in monocots. This regulatory sequence is quite distinct from the other reported ubiquitin promoters in structure and performs better in monocots compared to other commonly used promoters—maize Ubi1 and Cauliflower Mosaic Virus 35S.  相似文献   

17.
Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non‐transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress.  相似文献   

18.
A promoter fusion (Sh35) combining upstream regulatory regions from the maize Sh1 promoter with a truncated 35S promoter, Δ9035 (–90 to +8) has been compared with the original Sh1 promoter for its capacity to promote expression of the β-glucuronidase (GUS) gene in stably transformed tomato plants. For both promoters, very faint GUS expression was detected in the vegetative tissues, and no expression was detected in the fruit pericarp tissues. However, in the seed, Sh1 promoted low GUS expression but Sh35 directed 25-fold higher GUS expression. For both constructs, the profile of GUS expression was similar to that of endogenous sucrose synthase activity, but maximal GUS activity was reached 15 days after the peak of sucrose synthase activity. Received: 20 October 1998 / Revision received: 1 December 1998 / Accepted: 14 December 1998  相似文献   

19.
A novel constitutive promoter from the maize histone H2Bgene was recently identified. In this study, we characterised H2B promoter activity in both wheat and maize tissues using the gusA reporter gene and two synthetic versions of the pat (phosphinothricin acetyl transferase) selectable marker gene, namely mopat and popat. Analyses of transgenic plants showed that the H2B promoter is able to drive the expression of gusA to strong, constitutive levels in wheat and maize tissues. Using an H2B:mopat construct and phosphinothricin selection, we recovered transgenic wheat plants at efficiencies ranging from 0.3% to 7.4% (mean 1.6%), and the efficiency of selection ranged from 40% to 100% (mean 77.7%). In another application, H2B was combined with the maize Ubi-1 or the maize Adh-1 intron to drive the expression of mopat and popat. Transformation efficiencies with the Ubi-1 intron were between 1.4- to 16-fold greater than with the Adh-1 intron. However, the use of either of the introns was necessary for the recovery of transgenic plants. Mopat gave higher transformation efficiencies and induced higher levels of PAT protein in maize tissues than popat.  相似文献   

20.
The efficiency of GUS (-Glucuronidase) gene expression in embryogenic callus and young leaflets of mature and seedling palm after microprojectile bombardment with five constructs (pEmuGN, pAHC25, pAct1-F4, pGH24 and pBARGUS) was evaluated to identify the most suitable promoter(s) to use in transformation attempts in oil palm. Expression of the GUS gene driven by theEmu, Ubi1, Act1 35S orAdh1 was assayed, both histochemically and fluorometrically, from a total of 200 plates of tissues in eight independent experiments two days after bombardment. A completely randomized experimental design was used for each experiment, and the data analysed by ANOVA and Duncan's Multiple Range Test. The expression level of GUS driven by theEmu orUbi1 promoters was significantly higher than that of the Act], 35S and Adhl promoters in many experiments, and that of theAdhl was significantly lower than those of the other four promoters. Both histochemical and fluorometric data indicate that in embryogenic callus, the expression of theEmu promoter was higher than that of theUbi1 whereas in young leaflets from mature palm the Ubi1 expression was stronger. The performances of the five promoters were also tested in tobacco callus using a fluorometric GUS assay. The activity of the 35S promoter was highest, and significantly different from that of all the other promoters except theEmu, and that of theAct1 promoter was lowest. These results indicate that either theUbil orEmu promoter should facilitate the expression of desired genes in oil palm and aid in development of an efficient stable transformation system.Abbreviations GUS -Glucuronidase - EC embryogenic callus - YLMP young leaflet from mature palm - YLSP young leaflet from seedling palm - MU methyl umbelliferone - MUG 4-methyl--D-glucuronide - X-glue 5-bromo-4-chloro-3-indoyl-glucuronide - Ubil maize ubiquitin 1 - Actl rice actin 1 - Adh1 maize alcohol dehydrogenase 1 - Emu a recombinant truncated maize alcohol dehydrogenase 1 - ANOVA Analysis of variance - DMRT Duncan's Multiple Range Test Communicated by W A. Parrott  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号