首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley, an important member of the cereals, has been successfully transformed through various methods such as particle bombardment, Agrobacterium tumefaciens, DNA uptake, and electroporation. Initially, the transformation in barley concentrated on developing protocols using marker genes such as gus, bar, and hpt. Immature embryos and callus derived from immature embryos were targeted for transformation. Subsequently, genes of agronomic and malting importance have been deployed in barley. Particle bombardment appears to be the preferred choice for barley transformation in the majority of the reports, although Agrobacterium-mediated transformation is being used more often. The current review focuses on the challenges encountered in barley transformation such as somaclonal variation, development of transformation systems for commercial cultivars, gene expression, stability and inheritance, and gene flow. Newer markers such as the green fluorescent protein (gfp), firefly luciferase, and phosphomannose isomerase were found to be useful in the selection of transgenic plants. Tissue-specific promoters such as those for B1-hordein and D-hordein genes, and spike-specific promoters, are increasingly used to drive gene expression. The review also describes recent research on gene-tagging through transformation, insertion of disease resistance, and abiotic stress resistance genes, transformation with genes for improved malting quality, nutrient content, feed quality, and the production of feed enzymes and pharmaceutical compounds.  相似文献   

2.
Advances in the genetic transformation of cereals have improved the prospects of using biotechnology for plant improvement, and a toolbox of promoters with defined specificities would be a valuable resource in controlling the expression of transgenes in desired tissues for both plant improvement and molecular farming. A number of promoters have been isolated from the important cereals (wheat, barley, rice and maize), and these promoters have been tested mostly in homologous cereal systems and, to a lesser extent, in heterologous cereal systems. The use of these promoters across the important cereals would add value to the utility of each promoter. In addition, promoters with less sequence homology, but with similar specificities, will be crucial in avoiding homology-based gene silencing when expressing more than one transgene in the same tissue. We have tested wheat and barley promoters in transgenic barley and wheat to determine whether their specificity is shared across these two species. The barley bifunctional α-amylase/subtilisin inhibitor ( Isa ) promoter, specific to the pericarp in barley, failed to show any activity in wheat, whereas the wheat early-maturing ( Em ) promoter showed similar activity in wheat and barley. The wheat high-molecular-weight glutenin ( HMW-Glu ) and barley D-hordein ( D-Hor ) and B-hordein ( B-Hor ) storage protein promoters maintained endosperm-specific expression of green fluorescent protein (GFP) in wheat and barley, respectively. Using gfp , we have demonstrated that the Isa and Em promoters can be used as strong promoters to direct transgenes in specific tissues of barley and wheat grain. Differential promoter activity across cereals expands and adds value to a promoter toolbox for utility in plant biotechnology.  相似文献   

3.
Fusarium head blight (FHB) is a major disease of wheat in the warm and humid wheat growing areas of the world. FHB causes severe yield reduction, decreases grain quality and entails toxicological problems in food and feed. After date there is not much known about the molecular basis of the interaction betweenFusarium spp. and cereals. To improve disease resistance in cereals, we want to establish a comprehensive collection of disease resistance-related barley genes including key elements involved in the defense response the genusFusarium. To identify barley cultivars with differential responses (high and low susceptibility) toFusarium, we comparatively investigated the interaction phenotypes of barley accessions toF. culmorum in roots and spikes. Beside a consistent, high reproducible variation in the reaction pattern of different genotypes, we found an overall consistency between the degree of susceptibility of root and spike tissue in the selected lines, suggesting that root tissue can be used for high throughput disease resistance screening.  相似文献   

4.
Abstract

Cereals are the most important group of plants for human nutrition and animal feed. Partially due to the commercial value of crop plants, there has been an ever-increasing interest in using modern biotechnological methods for the improvement of the characteristics of cereals during the past decade. The rapid progress in molecular biology, plant cell culture techniques, and gene transfer technology has resulted in successful transformations of all the major cereals—maize, rice, wheat, and barley. This brings the biotechnological methods closer to the routine also in barley breeding. In this article, the current status of barley genetic engineering, including the patent situation, is reviewed. The needs, aims, and possible applications of genetic engineering in barley breeding are discussed.  相似文献   

5.
Nuutila  A.M.  Ritala  A.  Salmenkallio-Marttila  M.  Aspegren  K.  Aikasalo  R.  Kurtèn  U.  Tammisola  J.  Teeri  T.H.  Mannonen  L.  Kauppinen  V. 《Phytochemistry Reviews》2002,1(1):135-140
The processing quality of cereals can be modified by altering the structural grain constituents or the enzyme activities that mobilize storage reserves of the seeds. In order to complement the malt enzyme spectrum, a gene encoding for a thermotolerant fungal endo-(1,4)--glucanase was introduced into two barley cultivars, Kymppi and Golden Promise. The gene was expressed in the seeds during germination, thus providing a thermotolerant enzyme that is active under mashing conditions. The amount of thermotolerant -glucanase produced by the seeds (ca. 0.025% soluble seed protein) has been shown to be sufficient to reduce wort viscosity by decreasing the soluble -glucan content. For the safe commercial cultivation of transgenic plants risk assessment of their cultivation is needed. In our study experimental estimates of the transgene flow from transgenic barley by pollen dispersal were produced. Field trials were conducted during the summers of 1996 and 1997. A transgenic barley line homozygous for the gene encoding for neomycin phosphotransferase was used as a source of pollen and male-sterile barley lines as recipients. In order to be able to transform the cross-fertilization frequencies to corresponding values of normal male-fertile barley, plots of normal barley were also included in the experimental plan. On the basis of our study, cross-fertilization in male-sterile recipient barley is possible with very low frequency up to 50 meters from the donor area. However, the frequency dramatically decreases with distance and due to self-pollination the possibility of cross-fertilization remains very low in normal cultivated barley.  相似文献   

6.
7.
Molecular genetics of disease resistance in cereals   总被引:13,自引:0,他引:13  
AIMS: This Botanical Briefing attempts to summarize what is currently known about the molecular bases of disease resistance in cereal species and suggests future research directions. SCOPE: An increasing number of resistance (R) genes have been isolated from rice, maize, wheat and barley that encode both structurally related and unique proteins. This R protein diversity may be attributable to the different modus operandi employed by pathogen species in some cases, but it is also a consequence of multiple defence strategies being employed against phytopathogens. Mutational analysis of barley has identified additional genes required for activation of an R gene-mediated defence response upon pathogen infection. In some instances very closely related barley R proteins require different proteins for defence activation, demonstrating that, within a single plant species, multiple resistance signalling pathways and different resistance strategies have evolved to confer protection against a single pathogen species. Despite the apparent diversity of cereal resistance mechanisms, some of the additional molecules required for R protein function are conserved amongst cereal and dicotyledonous species and even other eukaryotic species. Thus the derivation of functional homologues and interacting partner proteins from other species is contributing to the understanding of resistance signalling in cereals. The potential and limit of utilizing the rice genome sequence for further R gene isolation from cereal species is also considered, as are the new biotechnological possibilities for disease control arising from R gene isolation. CONCLUSIONS: Molecular analyses in cereals have further highlighted the complexity of plant-pathogen co-evolution and have shown that numerous active and passive defence strategies are employed by plants against phytopathogens. Many advances in understanding the molecular basis of disease resistance in cereals have focused on monogenic resistance traits. Future research targets are likely to include less experimentally tractable, durable polygenic resistances and nonhost resistance mechanisms.  相似文献   

8.
Molecular genetics of heat tolerance and heat shock proteins in cereals   总被引:34,自引:0,他引:34  
Heat stress is common in most cereal-growing areas of the world. In this paper, we summarize the current knowledge on the molecular and genetic basis of thermotolerance in vegetative and reproductive tissues of cereals. Significance of heat stress response and expression of heat shock proteins (HSPs) in thermotolerance of cereal yield and quality is discussed. Major avenues for increasing thermotolerance in cereals via conventional breeding or genetic modification are outlined.  相似文献   

9.
Germinlike proteins (GLP) are encoded in plants by a gene family with proposed functions in plant development and defense. Genes of GLP subfamily 4 of barley (HvGLP4, formerly referred to as HvOxOLP) and the wheat orthologue TaGLP4 (formerly referred to as TaGLP2a) were previously found to be expressed in pathogen-attacked epidermal tissue of barley and wheat leaves, and the corresponding proteins are proposed to accumulate in the apoplast. Here, the role of HvGLP4 and TaGLP4 in the defense of barley and wheat against Blumeria graminis (DC.) E. O. Speer, the cereal powdery mildew fungus, was examined in an epidermal transient expression system and in transgenic Arabidopsis thaliana plants overexpressing His-tagged HvGLP4. Leaf extracts of transgenic Arabidopsis overexpressing HvGLP4 contained a novel His-tagged protein with superoxide dismutase activity and HvGLP4 epitopes. Transient overexpression of TaGLP4 and HvGLP4 enhanced resistance against B. graminis in wheat and barley, whereas transient silencing by RNA interference reduced basal resistance in both cereals. The effect of GLP4 overexpression or silencing was strongly influenced by the genotype of the plant. The data suggest that members of GLP subfamily 4 are components of quantitative resistance in both barley and wheat, acting together with other, as yet unknown, plant components.  相似文献   

10.
The feasibility of producing plant cell wall polysaccharide-hydrolysing feed enzymes in the endosperm of barley grain was investigated. The coding region of a modified xylanase gene (xynA) from the rumen fungus, Neocallimastix patriciarum, linked with an endosperm-specific promoter from cereal storage protein genes was introduced into barley by Agrobacterium-mediated transformation. Twenty-four independently transformed barley lines with the xylanase gene were produced and analysed. The fungal xylanase was produced in the developing endosperm under the control of either the rice glutelin B-1 (GluB-1) or barley B1 hordein (Hor2-4) promoter. The rice GluB-1 promoter provided an apparently higher expression level of recombinant proteins in barley grain than the barley Hor2-4 promoter in both transient and stable expression experiments. In particular, the mean value for the fungal xylanase activity driven by the GluB-1 promoter in the mature grains of transgenic barley was more than twice that with the Hor2-4 promoter. Expression of the xylanase transgene under these endosperm-specific promoters was not observed in the leaf, stem and root tissues. Accumulation of the fungal xylanase in the developing grains of transgenic barley followed the pattern of storage protein deposition. The xylanase was stably maintained in the grain during grain maturation and desiccation and post-harvest storage. These results indicate that the cereal grain expression system may provide an economic means for large scale production of feed enzymes in the future.  相似文献   

11.
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.  相似文献   

12.
The presence of dictyosomes secreting densely stained vesicles throughout endosperm protein body formation was confirmed for four cereals (rice, Oryza sativa L.; hard red winter wheat, Triticum aestivum L.; winter feed barley and spring malting barley, Hordeum vulgare L.; oats, Avena sativa L.). The contents of the Golgi vesicles and protein bodies were digested with proteases for all cereals except rice. It was found in the case of rice that OsO4 altered the proteins in the Golgi apparatus and protein bodies making them resistant to protease digestion. These results imply that the Golgi apparatus plays an important role in the concentration and transport of storage proteins into vacuoles.  相似文献   

13.
Experiments were performed to compare the composition and nutritive value of mixtures containing leaf protein coagulum from lucerne with cereals (ground barley, ground wheat and wheat bran), with non-processed cereals alone or with the addition of separately-dried leaf protein. The chemical composition of mixtures and amino acid composition of their proteins were determined by conventional methods. The biological value and true digestibility of cereals and mixture proteins were determined on rats by the Thomas-Mitchell balance method.The biological values of mixture proteins were higher, but their digestibility was lower, than those of cereals alone. Generally, better results were obtained when cereals were mixed with separately-dried leaf protein and with barley rather than wheat.  相似文献   

14.
15.
The in vivo synthesis of early heat-shock proteins in young leaves of barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) was studied by one- and two-dimensional electrophoresis. Analysis of whole leaf protein patterns demonstrated clearly the enhanced resolution of heat-shock proteins, especially those of low molecular weight, when separated by two-dimensional electrophoresis. Comparison between the two cereals showed that a greater number and diversity of heat-shock proteins were induced in the subtropical C4 (sorghum) species compared to the temperate C3 (barley) species. Fractionation of whole leaf proteins into soluble and membrane fractions showed the majority of heat-shock proteins to be associated with the soluble fraction in both sorghum and barley. However, several low molecular mass (17-24 kilodalton) heat-shock proteins were clearly identified in the membrane fractions, indicating a likely association with thylakoid membranes in vivo during the early stages of a heat-shock response in both species.  相似文献   

16.
Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction of an indigenous fungal protective gene into cereals such as wheat barley and rice. Thus far the gene of choice has been tri101 whose gene product catalyzes the transfer of an acetyl group from acetyl coenzyme A to the C3 hydroxyl moiety of several trichothecene mycotoxins. In vitro this has been shown to reduce the toxicity of the toxins by approximately 100-fold but has demonstrated limited resistance to FHB in transgenic cereal. To understand the molecular basis for the differences between in vitro and in vivo resistance the three-dimensional structures and kinetic properties of two TRI101 orthologs isolated from Fusarium sporotrichioides and Fusarium graminearum have been determined. The kinetic results reveal important differences in activity of these enzymes toward B-type trichothecenes such as deoxynivalenol. These differences in activity can be explained in part by the three-dimensional structures for the ternary complexes for both of these enzymes with coenzyme A and trichothecene mycotoxins. The structural and kinetic results together emphasize that the choice of an enzymatic resistance gene in transgenic crop protection strategies must take into account the kinetic profile of the selected protein.  相似文献   

17.
To understand the molecular basis of freezing tolerance in plants, several low temperature-responsive genes have been identified from wheat. Among these are two genes named TaIRI-1 and TaIRI-2 (Triticum aestivum ice recrystallization inhibition) that are up-regulated during cold acclimation in freezing-tolerant species. Phytohormones involved in pathogen defense pathways (jasmonic acid and ethylene) induce the expression of one of the two genes. The encoded proteins are novel in that they have a bipartite structure that has never been reported for antifreeze proteins. Their N-terminal part shows similarity with the leucine-rich repeat-containing regions present in the receptor domain of receptor-like protein kinases, and their C-terminus is homologous to the ice-binding domain of some antifreeze proteins. The recombinant TaIRI-1 protein inhibits the growth of ice crystals, confirming its function as an ice recrystallization inhibition protein. The TaIRI genes were found only in the species belonging to the Pooideae subfamily of cereals. Comparative genomic analysis suggested that molecular evolutionary events took place in the genome of freezing-tolerant cereals to give rise to these genes with putative novel functions. These apparent adaptive DNA rearrangement events could be part of the molecular mechanisms that ensure the survival of hardy cereals in the harsh freezing environments.  相似文献   

18.
Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals.  相似文献   

19.
The molecular weights ofwaxy proteins, by SDS-PAGE, and the N-terminal amino acid sequences of mature protein and of V8 protease-induced fragments were determined in diploid cereals. The homology of the primary structure was relatively high among cereals examined here, and there appeared to be a common sequence, V-F-V-G-A-E-M-A, in the vicinity of the N terminus. Based on the amino acid sequences, these cereals could be divided into two groups, including corn and rice in one and diploid wheat, fourAegilops species, rye, and barley in the other. In diploid wheat andAegilops species there were substitutions of amino acids in the primary structure. Variations of this sort suggest that the primary structure ofwaxy proteins would provide clues to the phylogenetic relations in the wheat group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号