首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

2.
Chlorophyll a fluorescence rise kinetics (from 50 μs to 1 s) were used to investigate the non-photochemical reduction of the plastoquinone (PQ) pool in osmotically broken spinach chloroplasts (Spinacia oleracea L.). Incubation of the chloroplasts in the presence of exogenous NADPH or NADH resulted in significant changes in the shape of the fluorescence transient reflecting an NAD(P)H-dependent accumulation of reduced PQ in the dark, with an extent depending on the concentration of NAD(P)H and the availability of oxygen; the dark reduction of the PQ pool was saturated at lower NAD(P)H concentrations and reached a higher level when the incubation took place under anaerobic conditions than when it occurred under aerobic conditions. Under both conditions NADPH was more effective than NADH in reducing PQ, however only at sub-saturating concentrations. Neither antimycin A nor rotenone were found to alter the effect of NAD(P)H. The addition of mercury chloride to the chloroplast suspension decreased the NAD(P)H-dependent dark reduction of the PQ pool, with the full inhibition requiring higher mercury concentrations under anaerobic than under aerobic conditions. This is the first time that this inhibitory role of mercury is reported for higher plants. The results demonstrate that in the dark the redox state of the PQ pool is regulated by the reduction of PQ via a mercury-sensitive NAD(P)H-PQ oxidoreductase and the reoxidation of reduced PQ by an O2-dependent pathway, thus providing additional evidence for the existence of a chlororespiratory electron transport chain in higher plant chloroplasts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Jin  Ming-Xian  Mi  Hualing 《Photosynthetica》2002,40(2):161-164
Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro- genase (NDH).  相似文献   

4.
Experiments were carried out to identify a process co-determining with Q(A) the fluorescence rise between F(0) and F(M). With 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), the fluorescence rise is sigmoidal, in its absence it is not. Lowering the temperature to -10°C the sigmoidicity is lost. It is shown that the sigmoidicity is due to the kinetic overlap between the reduction kinetics of Q(A) and a second process; an overlap that disappears at low temperature because the temperature dependences of the two processes differ. This second process can still relax at -60°C where recombination between Q(A)(-) and the donor side of photosystem (PS) II is blocked. This suggests that it is not a redox reaction but a conformational change can explain the data. Without DCMU, a reduced photosynthetic electron transport chain (ETC) is a pre-condition for reaching the F(M). About 40% of the variable fluorescence relaxes in 100ms. Re-induction while the ETC is still reduced takes a few ms and this is a photochemical process. The fact that the process can relax and be re-induced in the absence of changes in the redox state of the plastoquinone (PQ) pool implies that it is unrelated to the Q(B)-occupancy state and PQ-pool quenching. In both +/-DCMU the process studied represents ~30% of the fluorescence rise. The presented observations are best described within a conformational protein relaxation concept. In untreated leaves we assume that conformational changes are only induced when Q(A) is reduced and relax rapidly on re-oxidation. This would explain the relationship between the fluorescence rise and the ETC-reduction.  相似文献   

5.
Jerzy Kruk  Stanislaw Karpinski 《BBA》2006,1757(12):1669-1675
We have described a direct, high-performance liquid chromatography-based method of estimation of the total level of plastoquinone (PQ) in leaves, the redox state of total (photoactive and non-photoactive) PQ, as well as the redox state of the PQ-pool that is applicable to any illumination conditions. This method was applied to Arabidopsis thaliana leaves but it can be applied to any other plant species. The obtained results show that the level of total PQ was 25 ± 3 molecules/1000 chlorophyll (Chl) molecules in relation to foliar total Chl content. The level of the photoactive PQ, i.e., the PQ-pool, was about 31% of the total PQ present in Arabidopsis leaves that corresponds to about 8 PQ molecules/1000 Chl molecules. The reduction level of the non-photoactive PQ fraction, present outside thylakoids in chloroplasts, was estimated to account for about 49%. The measurements of the redox state of the PQ-pool showed that the pool was reduced during the dark period in about 24%, and during the light period (150 μmol/m2·s) the reduction of the PQ-pool increased to nearly 100%. The obtained results were discussed in terms of the activity of chlororespiration pathways in Arabidopsis and the regulatory role of the redox state of PQ-pool in various physiological and molecular processes in plants.  相似文献   

6.
We have described a direct, high-performance liquid chromatography-based method of estimation of the total level of plastoquinone (PQ) in leaves, the redox state of total (photoactive and non-photoactive) PQ, as well as the redox state of the PQ-pool that is applicable to any illumination conditions. This method was applied to Arabidopsis thaliana leaves but it can be applied to any other plant species. The obtained results show that the level of total PQ was 25+/-3 molecules/1000 chlorophyll (Chl) molecules in relation to foliar total Chl content. The level of the photoactive PQ, i.e., the PQ-pool, was about 31% of the total PQ present in Arabidopsis leaves that corresponds to about 8 PQ molecules/1000 Chl molecules. The reduction level of the non-photoactive PQ fraction, present outside thylakoids in chloroplasts, was estimated to account for about 49%. The measurements of the redox state of the PQ-pool showed that the pool was reduced during the dark period in about 24%, and during the light period (150 micromol/m(2).s) the reduction of the PQ-pool increased to nearly 100%. The obtained results were discussed in terms of the activity of chlororespiration pathways in Arabidopsis and the regulatory role of the redox state of PQ-pool in various physiological and molecular processes in plants.  相似文献   

7.
In photosynthetic eukaryotes, the redox state of the plastoquinone (PQ) pool is an important sensor for mechanisms that regulate the photosynthetic electron transport. In higher plants, a multimeric nicotinamide adenine dinucleotide (phosphate) (NAD(P))H dehydrogenase (NDH) complex and a plastid terminal oxidase (PTOX) are involved in PQ redox homeostasis in the dark. We recently demonstrated that in the microalgae Chlamydomonas reinhardtii, which lacks the multimeric NDH complex of higher plants, non-photochemical PQ reduction is mediated by a monomeric type-II NDH (Nda2). In this study, we further explore the nature and the importance of non-photochemical PQ reduction and oxidation in relation to redox homeostasis in this alga by recording the ‘dark’ chlorophyll fluorescence transients of pre-illuminated algal samples. From the observation that this fluorescence transient is modified by addition of propyl gallate, a known inhibitor of PTOX, and in a Nda2-deficient strain we conclude that it reflects post-illumination changes in the redox state of PQ resulting from simultaneous PTOX and Nda2 activity. We show that the post-illumination fluorescence transient can be used to monitor changes in the relative rates of the non-photochemical PQ reduction and reoxidation in response to different physiological situations. We study this fluorescence transient in algae acclimated to high light and in a mutant deficient in mitochondrial respiration. Some of our observations indicate that the chlororespiratory pathway participates in redox homeostasis in C. reinhardtii.  相似文献   

8.
The oxidation of the PQ-pool after illumination with 50 or 500 micromol quantam(-2)s(-1) was measured in isolated thylakoids as the increase in DeltaA(263), i.e., as the appearance of PQ. While it was not observed under anaerobic conditions, under aerobic conditions it was biphasic. The first faster phase constituted 26% or 44% of total reappearance of PQ, after weak or strong light respectively. The dependence on oxygen presence as well as the correlation with the rate of oxygen consumption led to conclusion that this phase represents the appearance of PQ from PQ(*-) produced in the course of PQH(2) oxidation by superoxide accumulated in the light within the membrane.  相似文献   

9.
The question of plastoquinone (PQ) concentration and its stoichiometry to photosystem I (PSI) and PSII in spinach chloroplasts is addressed here. The results from three different experimental approaches were compared. (a) Quantitation from the light-induced absorbance change at 263 nm (A263) yielded the following ratios (mol:mol); Chl:PQ=70:1, PQ:PSI=9:1 and PQ:PSII=7:1. The kinetics of PQ photoreduction were a monophasic but non-exponential function of time. The deviation of the semilogarithmic plots from linearity reflects the cooperativity of several electron transport chains at the PQ pool level. (b) Estimates from the area over the fluorescence induction curve (Afl) tend to exaggerate the PQ pool size because of electron transfer via PSI to molecular oxygen (Mehler reaction) resulting in the apparent increase of the pool of electron acceptors. The reliability of the Afl method is increased substantially upon plastocyanin inhibition by KCN. (c) Quantitation of the number of electrons removed from PQH2 by PSI, either under far-red excitation or after the addition of DCMU to preilluminated chloroplasts, is complicated due to the competitive loss of electrons from PQH2 to molecular oxygen. The latter is biphasic reaction occurring with half-times of about 2 s (30–40% of PQH2) and of about 60 s (60–70% of PQH2).Abbreviations Afl area over the fluorescence induction curve - Chl chlorophyll - Cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PQ plastoquinone - PS photosystem - P700 reaction center of PSI - Q primary quinone acceptor of PSII - Tricine N-tris (hydroxymethyl) methyl glycine - Triton X-100 octyl phenoxy polyethoxyethanol  相似文献   

10.
Variable chlorophyll a (Chl a) fluorescence is composed of a photochemical and a thermal phases of similar amplitudes. The photochemical phase can be induced by a saturating single turnover flash (STF) and reflects the reduction of the Photosystem II (PS II) QA primary electron acceptor. The thermal phase requires multiple turnover flash (MTF) and is somehow related to the reduction of the plastoquinone (PQ) molecules. This article aimed to determine the relative contributions of the QB-bound and the free oxidized PQ molecules to the thermal phase of Chl a fluorescence. We thus measured the interactive effects of exogenous PQ (PQex), of an inhibitor (DCMU) acting at the QB site of PS II and of an artificial quencher, 2-methyl-1,4-naphtoquinone, on Chl a fluorescence levels induced by STF (FF) and MTF (FM) in spinach thylakoids. We observed that: (1) the incorporation of PQex in thylakoids stimulated photosynthetic electron transport but barely affected FF and FM in the absence of DCMU; (2) DCMU significantly increased the amplitude of FF but slightly quenched FM; (3) 2-methyl-1,4-naphtoquinone quenched FM to a larger-extent than FF; (4) DCMU increased the quenching effects of PQex on FF and FM and also, of methyl-1,4-naphtoquinone on FF. These results indicate that: (1) the QB-bound and the free PQ molecules contribute to about 56% and 25%, respectively, to the thermal phase Chl a fluorescence in dark-adapted thylakoids; and (2) the thermal phase of Chl a fluorescence is more susceptible than the photochemical phase to the non-photochemical quenching effect of oxidized quinones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995)  相似文献   

12.
It has been found that plastoquinone (PQ) and alpha-tocopherol quinone (alpha-TQ) can form quinhydrone-type charge-transfer complexes on PQH2 and alpha-TQH2, respectively, both in the crystalline state and in solutions of organic solvents. The charge-transfer spectra of PQ/PQH2 mixtures in hydrophobic solvents showed two bands: one at 349-358 nm, the other at 430-440 nm, one charge-transfer band at 351-355 nm occurring in water-miscible solvents. The intensity ratio of these two bands varied with changing PQ/PQH2 ratio. The charge-transfer spectra of alpha-TQ/alpha-TQH2 mixtures in all solvents investigated showed one peak at 361-367 nm and a broad shoulder within the range 400-540 nm, whose shape varied depending on the solvent used. In the infrared spectrum of PQ and alpha-TQ (1700-1600 cm(-1)) splitting of the carbonyl band occurred and was caused by the presence of two peak. In the spectra of quinhydrones the splitting disappeared, this being brought about by the appearance of a new peak at the position of splitting, which originated from the complexed quinones. The possibility of the formation of such complexes in thylakoid membranes is discussed.  相似文献   

13.
Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (sigma(PS II)) which is a product of the photosystem II optical cross-section a(PS II) and of its photochemical yield Phi(PS II) (sigma (PS II) = a(PS II) Phi(PS II)). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (F(M) (ST)) and in a multiple turnover light pulse (F(M) (MT)). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section sigma (PS II) is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the F(M) (ST) and F(M) (MT) quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section sigma (PS II) and the quenching of the multiple-turnover F(M) (MT) fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the Q(A) redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.  相似文献   

14.
5-(and-6)-Carboxy-2',7'-dichlorodihydrofluorescein diacetate (DCF-DA), a permeative indicator of oxidative stress, was loaded into dissected leaves of wheat in order to monitor the temporal development of reactive oxygen species. DCF fluorescence was found to be constant under dark conditions. Upon loading the leaves with salicyl hydroxamate, a blocker of the alternative oxidase, DCF fluorescence linearly increased in the dark. This indicates a function of alternative oxidase in preventing reactive oxygen radicals in the mitochondria. Upon illumination, the DCF signal decreased within 5 min. As illuminated chloroplasts would increase the load of reactive oxygen species, the observed decrease cannot be assigned to the production of reactive oxygen species in the chloroplasts. Three different putative mechanisms are considered which all assign an important role to light-induced delivery of NAD(P)H: (1) direct quenching of DCF fluorescence by light-generated NAD(P)H, (2) light-stimulated activation of scavenging enzymes, or (3) redirection of mitochondrial electron fluxes as caused by the delivery of excess redox equivalents (NADH) from the chloroplasts.  相似文献   

15.
Although it is generally assumed that the plastoquinone pool of thylakoid membranes in leaves of higher plants is rapidly oxidized upon darkening, this is often not the case. A multiflash kinetic fluorimeter was used to monitor the redox state of the plastoquinone pool in leaves. It was found that in many species of plants, particularly those using the NAD-malic enzyme C4 system of photosynthesis, the pool actually became more reduced following a light to dark transition. In some Amaranthus species, plastoquinone remained reduced in the dark for several hours. Far red light, which preferentially drives Photosystem I turnover, could effectively oxidize the plastoquinone pool. Plastoquinone was re-reduced in the dark within a few seconds when far red illumination was removed. The underlying mechanism of the dark reduction of the plastoquinone pool is still uncertain but may involve chlororespiratory activity.Abbreviations apparent Fo observed fluorescence yield after dark adaptation - Fm maximum fluorescence when all QA is fully reduced - Fo minimum fluorescence yield when QA is fully oxidized and non-photochemical quenching is fully relaxed - Fs steady state fluorescence yield - PPFD photosynthetic photon flux density - PQ plastoquinone - QA primary quinone acceptor of the Photosystem II reaction center - QB secondary quinone acceptor to the Photosystem II reaction center - F Fm minus Fs  相似文献   

16.
17.
The dark reoxidation of the photochemically reduced primaryelectron acceptor of photosystem II, Q., in the presence of3-(3',4'-dichlorophenyl)-l,l-dimethyl urea (DCMU) by the redoxcounterpart (here designated Z) of Q, was studied by monitoringthe dark recovery of the induction of chlorophyll fluorescence. In normal chloroplasts, the dark reoxidation of reduced Q inthe presence of DCMU was not affected by the externally addedhydrophilic reductants; ascorbate, hydroquinone, hydrogen peroxide,manganous chloride, potassium iodide and potassium ferrocyanide.In chloroplasts whose oxidizing side of photosystem II had beeninactivated by heat- or Tris-treatments, reoxidation was inhibitedpartially. This inhibition increased on the addition of hydrophilicreductants, but was relieved by increasing the redox potentialof the suspension medium with the chloroplasts. We concluded that the redox counterpart, Z, of Q, in the presenceof DCMU is located in a hydrophobic environment which can bedenatured by heat- or Tris-treatments to allow the access ofnormally extruded hydrophilic electron donors. (Received January 10, 1981; Accepted March 12, 1981)  相似文献   

18.
The light-induced decline of chlorophyll a fluorescence from a peak (P) to a low stationary level (S) in intact, physiologically active isolated chloroplasts and in intact Chlorella cells is shown to be predominantly composed of two components: (1) fluorescence quenching by partial reoxidation of the quencher Q, the primary acceptor of Photosystem II and (2) energy-dependent fluorescence quenching related to the photoinduced acidification of the intrathylakoid space. These two mechanisms of fluorescence quenching can be distinguished by the different kinetics of the relaxation of quenching observed upon addition of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The relaxation of quenching by addition of DCMU is biphasic. The fast phase with a half-time of about 1 s is attributed to the reversal of Q-dependent quenching. The slow phase with a half-time of about 15 s in chloroplasts and 5 s in Chlorella cells is ascribed to relaxation of energy-dependent quenching. As shown by fluorescence spectroscopy at 77 K, the energy-dependent fluorescence quenching essentially is not caused by increased transfer of excitation energy to Photosystem I. By analyzing the energy- and Q-dependent components of quenching, information on the energy state of the thylakoid membranes and on the redox state of Q under various physiological conditions is obtained.  相似文献   

19.
The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, Fmax, of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio Fmax(-DCMU)/Fmax(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The effects of DCMU (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) on the fluorescence induction transient (OJIP) in higher plants were re-investigated. We found that the initial (F(0)) and maximum (F(M)) fluorescence levels of DCMU-treated leaves do not change relative to controls when the treatment is done in complete darkness and DCMU is allowed to diffuse slowly into the leaves either by submersion or by application via the stem. Simultaneous 820 nm transmission measurements (a measure of electron flow through Photosystem I) showed that in the DCMU-treated samples, the plastoquinone pool remained oxidized during the light pulses whereas in uninhibited leaves, the F(M) level coincided with a fully reduced electron transport chain. The identical F(M) values with and without DCMU indicate that in intact leaves, the F(M) value is independent of the redox state of the plastoquinone pool. We also show that (i) the generally observed F(0) increase is probably due to the presence of (even very weak) light during the DCMU treatment, (ii) vacuum infiltration of leaf discs leads to a drastic decrease of the fluorescence yield, and in DCMU-treated samples, the F(M) decreases to the I-level of their control (leaves vacuum infiltrated with 1% ethanol), (iii) and in thylakoid membranes, the addition of DCMU lowers the F(M) relative to that of a control sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号