首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homoprotocatechuate 2,3-dioxygenase isolated from Brevibacterium fuscum utilizes an active site Fe(II) and O(2) to catalyze proximal extradiol cleavage of the substrate aromatic ring. In contrast to other members of the ring cleaving dioxygenase family, the transient kinetics of the extradiol dioxygenase catalytic cycle have been difficult to study because the iron is nearly colorless and EPR silent. Here, it is shown that the reaction cycle kinetics can be monitored by utilizing the alternative substrate 4-nitrocatechol (4NC), which is also cleaved in the proximal extradiol position. Changes in the optical spectrum of 4NC occurring as a result of ionization, environmental changes, and ring cleavage allow both the substrate binding and product formation phases of the reaction to be studied. It is shown that substrate binding occurs in a four-step process probably involving binding to two ionization states of the enzyme at different rates. Following an initial rapid binding of the monoanionic 4NC in the active site, slower binding to the Fe(II) and conversion to the dianionic form occur. The bound dianionic 4NC reacts rapidly with O(2) in four additional steps, apparently occurring in sequence. On the basis of the optical properties of the intermediates, these steps are hypothesized to be O(2) binding to the iron, isomerization of the resulting complex, ring opening, and product release. The natural substrate appears to form the same intermediates but with much larger rate constants. These are the first transient intermediates to be reported for an extradiol dioxygenase reaction.  相似文献   

2.
The enzyme 3,4-dihydroxyphenylacetate:oxygen 2,3-oxidoreductase (decyclizing) (homoprotocatechuate 2,3-dioxygenase) was purified from the thermophilic organism Bacillus stearothermophilus, grown with j-hydroxyphenylacetic acid as a source of carbon. The enzyme appeared to be homogeneous as judged by disc-gel electrophoresis and sedimentation equilibrium measurements. The average molecular weight determined by three independent procedures was 106,000; the protein was globular and was dissociated in sodium dodecyl sulfate to give a species of molecular weight 33,000 to 35,000. The enzyme was fairly stable on heating and showed maximal activity at about 57 degrees C. An Arrhenius plot of Km for homoprotocatechuate was concave upward, with a break at 32 degrees C; an increase in delta H above this temperature was compensated by lower values of --delta S. Several properties of this enzyme are contrasted with those reported for homoprotocatechuate 2,3-dioxygenase purified by other workers from Pseudomonas ovalis.  相似文献   

3.
Homoprotocatechuate 2,3-dioxygenase (HPCD) is a member of the extradiol dioxygenase family of non-heme iron enzymes. These enzymes catalyze the ring-cleavage step in the aromatic degradation pathway commonly found in soil bacteria. In this study, isothermal titration calorimetry (ITC) is used to measure the equilibrium constant (K?=?1.1?±?0.6?×?10(6)) and enthalpy change (ΔH?=?-17.0?±?1.7?kcal/mol) associated with homoprotocatechuate binding to HPCD. The ITC data are consistent with the release of approximately 2.6 protons upon binding of the substrate to HPCD. These results raise new questions regarding the relationships between substrate, protein, and the oxygen activation mechanism for this class of non-heme metalloenzymes.  相似文献   

4.
Groce SL  Lipscomb JD 《Biochemistry》2005,44(19):7175-7188
Homoprotocatechuate 2,3-dioxygenase (WT 2,3-HPCD) isolated from Brevibacterium fuscum utilizes an active site Fe(II) and O(2) to catalyze proximal extradiol cleavage of the aromatic ring of the substrate (HPCA). Here, the conserved active site residue His200 is changed to Gln, Glu, Ala, Asn, and Phe, and the reactions of the mutant enzymes are probed using steady-state and transient kinetic techniques. Each mutant catalyzes ring cleavage of HPCA to yield the normal product. H200Q and H200N retain 30-40% of the WT 2,3-HPCD activity at 24 degrees C, but the other mutants reduce the k(cat) to less than 9% of normal. The origin of the reduced activity is unlikely to be the substrate binding phase of the catalytic cycle, because the multistep anaerobic binding reaction of the chromophoric substrate 4-nitrocatechol (4NC) is shown to proceed with rate constants similar to those observed for WT 2,3-HPCD. In contrast, the rate constants of several steps in the multistep O(2) binding/insertion and product release half of the reaction cycle are substantially slowed, in particular the steps in which activated oxygen attacks the organic substrate and in which product is released. In the case of the H200N mutant, the product of 4NC oxidation is not the usual ring cleavage product, but rather the 4NC quinone. These results suggest that the main role of His200 is in facilitating the steps in the second half of the reaction cycle. The decreased rate constants for the O(2) insertion steps in the catalytic cycles of the mutant enzymes allow the oxygen adduct of an extradiol dioxygenase to be detected for the first time.  相似文献   

5.
Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires FeII for catalysis, but MnII can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD–HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient MIII–O2 ·? species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the MIII–O2 ·? species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD–4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD–ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of FeII and MnII. Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover. Accordingly, past studies have shown that intermediate FeIII species are observed for these mutant enzymes.  相似文献   

6.
Extradiol dioxygenases facilitate microbial aerobic degradation of catechol and its derivatives by activating molecular dioxygen and incorporating both oxygen atoms into their substrates. Experimental and theoretical studies have focused on the mechanism of the reaction at the active site. However, whether the catalytic rate is limited by O2 access to the active site has not yet been explored. Here, we choose a recently solved X-ray structure of homoprotocatechuate 2,3-dioxygenase as a typical example to determine potential pathways for O2 migration from the solvent into the enzyme center. On the basis of the trajectories of two 10-ns molecular dynamics simulations, implicit ligand sampling was used to calculate the 3D free energy map for O2 inside the protein. The energetically optimal routes for O2 diffusion were identified for each subunit of the homotetrameric protein structure. The O2 tunnels formed because of thermal fluctuations were also characterized by connecting elongated cavities inside the protein. By superimposing the favorable O2 tunnels on to the free energy map, both energetically and geometrically preferred O2 pathways were determined, as also were the amino acids that may be critical for O2 passage along these paths. Our results demonstrate that identical subunits possess quite distinct O2 tunnels. The order of O2 affinity of these tunnels is generally consistent with the order of the catalytic rate of each subunit. As a consequence, the probability of finding the reaction product is highest in the subunit containing the highest O2 affinity pathway.  相似文献   

7.
D I Roper  R A Cooper 《FEBS letters》1990,275(1-2):53-57
A cloned gene encoding the Escherichia coli C homoprotocatechuate (HPC) dioxygenase, an aromatic ring cleavage enzyme, was used to produce large amounts of the protein. Preparations of E. coli C HPC dioxygenase, whether expressed from the cloned gene or produced by the bacterium, lost activity very rapidly. The pure protein showed one type of subunit of Mr 33,000. The first 21 N-terminal amino acids were sequenced and the data used to confirm that the open reading frame of 831 bp, identified from the nucleotide sequence, encoded HPC dioxygenase. Comparison of the derived amino acid sequence with those of other extradiol and intradiol dioxygenases showed no obvious similarity to any of them.  相似文献   

8.
9.
2,3-Dihydroxybiphenyl 1,2-dioxygenase (EC ), the extradiol dioxygenase of the biphenyl biodegradation pathway, is subject to inactivation during the steady-state cleavage of catechols. Detailed analysis revealed that this inactivation was similar to the O(2)-dependent inactivation of the enzyme in the absence of catecholic substrate, resulting in oxidation of the active site Fe(II) to Fe(III). Interestingly, the catecholic substrate not only increased the reactivity of the enzyme with O(2) to promote ring cleavage but also increased the rate of O(2)-dependent inactivation. Thus, in air-saturated buffer, the apparent rate constant of inactivation of the free enzyme was (0.7 +/- 0.1) x 10(-3) s(-1) versus (3.7 +/- 0.4) x 10(-3) s(-1) for 2,3-dihydroxybiphenyl, the preferred catecholic substrate of the enzyme, and (501 +/- 19) x 10(-3) s(-1) for 3-chlorocatechol, a potent inactivator of 2,3-dihydroxybiphenyl 1,2-dioxygenase (partition coefficient = 8 +/- 2, K(m)(app) = 4.8 +/- 0.7 microm). The 2,3-dihydroxybiphenyl 1,2-dioxygenase-catalyzed cleavage of 3-chlorocatechol yielded predominantly 2-pyrone-6-carboxylic acid and 2-hydroxymuconic acid, consistent with the transient formation of an acyl chloride. However, the enzyme was not covalently modified by this acyl chloride in vitro or in vivo. The study suggests a general mechanism for the inactivation of extradiol dioxygenases during catalytic turnover involving the dissociation of superoxide from the enzyme-catecholic-dioxygen ternary complex and is consistent with the catalytic mechanism.  相似文献   

10.
Samelson-Jones BJ  Yeh SR 《Biochemistry》2006,45(28):8527-8538
Indoleamine 2,3-dioxygenase (IDO) is a heme-containing enzyme, which catalyzes the initial and rate-determining step of L-tryptophan (L-Trp) metabolism via the kynurenine pathway in nonhepatic tissues. Similar to inducible nitric oxide synthase (iNOS), IDO is induced by interferon-gamma and lipopolysaccharide in the inflammatory response. In vivo studies indicate that the nitric oxide (NO) produced by iNOS inhibits IDO activity by directly interacting with it and by promoting its degradation through the proteasome pathway. In this work, the molecular mechanisms underlying the interactions between NO and human recombinant IDO (hIDO) were systematically studied with optical absorption and resonance Raman spectroscopies. Resonance Raman data show that the heme prosthetic group in the NO-bound hIDO is situated in a unique protein environment and adopts an out-of-plane deformed geometry that is sensitive to L-Trp binding. Under mildly acidic conditions, the proximal heme iron-His bond is prone to rupture, resulting in a five-coordinate (5C) NO-bound species. The bond breakage reaction induces significant conformational changes in the protein matrix, which may account for the NO-induced inactivation of hIDO and its enhanced proteasome-linked degradation in vivo. Moreover, it was found that the NO-induced bond breakage reaction occurs more rapidly in the ferrous protein than in the ferric protein and is fully inhibited by L-Trp binding. The spectroscopic data presented here not only provide the first glimpse of the possible regulatory mechanism of hIDO by NO in the cell at the molecular level, but they also suggest that the NO-dependent regulation can be modulated by cellular factors, such as the NO abundance, pH, redox environment, and L-Trp availability.  相似文献   

11.
We explore the possibility of virtual transfer in the primary charge separation of photosynthetic bacteria within the context of several types of experimental data. We show that the peak that might be expected in the virtual rate as electric fields vary the intermediate state energy is severely broadened by coupling to high-frequency modes. The Stark absorption kinetics data are thus consistent with virtual transfer in the primary charge separation. High-frequency coupling also makes the temperature dependence weak over a wide range of parameters. We demonstrate that Stark fluorescence anisotropy data, usually taken as evidence of virtual transfer, can in fact be consistent with two-step transfer. We suggest a two-pulse excitation experiment to quantify the contributions from two-step and virtual transfer. We show that virtual absorption into a charge transfer state can make a substantial contribution to the Stark absorption spectrum in a way that is not related to any derivative of the absorption spectrum.  相似文献   

12.
The X-ray crystal structures of homoprotocatechuate 2,3-dioxygenases isolated from Arthrobacter globiformis and Brevibacterium fuscum have been determined to high resolution. These enzymes exhibit 83% sequence identity, yet their activities depend on different transition metals, Mn2+ and Fe2+, respectively. The structures allow the origins of metal ion selectivity and aspects of the molecular mechanism to be examined in detail. The homotetrameric enzymes belong to the type I family of extradiol dioxygenases (vicinal oxygen chelate superfamily); each monomer has four betaalphabetabetabeta modules forming two structurally homologous N-terminal and C-terminal barrel-shaped domains. The active-site metal is located in the C-terminal barrel and is ligated by two equatorial ligands, H214NE1 and E267OE1; one axial ligand, H155NE1; and two to three water molecules. The first and second coordination spheres of these enzymes are virtually identical (root mean square difference over all atoms, 0.19 A), suggesting that the metal selectivity must be due to changes at a significant distance from the metal and/or changes that occur during folding. The substrate (2,3-dihydroxyphenylacetate [HPCA]) chelates the metal asymmetrically at sites trans to the two imidazole ligands and interacts with a unique, mobile C-terminal loop. The loop closes over the bound substrate, presumably to seal the active site as the oxygen activation process commences. An "open" coordination site trans to E267 is the likely binding site for O2. The geometry of the enzyme-substrate complexes suggests that if a transiently formed metal-superoxide complex attacks the substrate without dissociation from the metal, it must do so at the C-3 position. Second-sphere active-site residues that are positioned to interact with the HPCA and/or bound O2 during catalysis are identified and discussed in the context of current mechanistic hypotheses.  相似文献   

13.
The initial step in the l-kynurenine pathway is oxidation of l-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O 2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O 2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis.  相似文献   

14.
Indoleamine 2,3-dioxygenase (IDO) is a heme enzyme that initiates the oxidative degradation of the least abundant, essential amino acid, l-tryptophan, along the kynurenine pathway. The local cellular depletion of l-tryptophan that results may enable the host to inhibit the growth of various infectious pathogens in vivo. However, over the past decade, it has become increasingly apparent that IDO also represents an important immune control enzyme. Thus, cells expressing IDO, seemingly paradoxically, are capable of suppressing local T cell responses to promote immune tolerance under various physiological and pathophysiological conditions of medical importance, including infectious diseases, foetal rejection, organ transplantation, neuropathology, inflammatory and auto-immune disorders and cancer. In this review, we briefly outline the biochemical properties of IDO, its known and hypothetical functions and the medical implications for inhibition or induction of IDO and/or its downstream catabolites in health and disease.  相似文献   

15.
Electron transfer from ortho-dihydroxy substrates, such as L(+)-ascorbic acid, L-adrenaline, and L-dopa, to iron(III) in [Fe(tetpy)(OH)2]+ ions anchored to sodium poly(L-glutamate) (FeTL) or poly(D-glutamate) (FeTD) was found to proceed stereoselectively when structurally ordered and partially shielded active sites prevent easy approach for redox partner. Oxidant-reductant interactions are then mediated by the polypeptide, whose conformational asymmetry ensures an efficient sterically discriminating environment. Evidence is produced that stereoselectivity chiefly arises from transition state effects, while thermodynamic discrimination is of minor importance. Theoretical models of the diastereomeric electron-transfer complexes were constructed by conformational energy calculations based on Coulombic, nonbonded, and hydrogen-bonded energy terms. The molecular parameters of the models enabled "differential" thermodynamic functions of the diastereomeric pairs and stereoselectivity to be evaluated and satisfactorily compared with those experimentally determined. The models give good insight into the observed topochemical phenomena and support the idea that stereoselectivity is coupled with a remote attack mechanism on the central metal ion where the peripheral tetpy ligand of the active sites acts as an electron-transfer agent.  相似文献   

16.
17.
Naphthalene 1,2-dioxygenase (Nap dox) and biphenyl 2,3-dioxygenase (Bph dox) are related enzymes that have differentiated during evolution as their specificity has changed. Although their component arrangement is similar, the structure of each component has been modified quite extensively. The purpose of this work was to determine the catalytic capacity of purified Nap dox toward chlorobiphenyls and to investigate the functionality of Bph dox components in the Nap dox system. Both enzyme systems were purified by affinity chromatography as histidine-tagged fused proteins. Data show for the first time that Nap dox can catalyze the oxygenation of all three monochlorobiphenyl isomers, but it is unable to hydroxylate 2,5-, 2,2′-, 3,3′-, 4,4′-di- and 2,2′,5,5′-tetrachlorobiphenyl. The rates of cytochrome c reduction by the ferredoxin components of the two enzymes were identical when the Bph dox reductase component was used in the assay, showing an efficient electron transfer between the Bph dox reductase component and the Nap dox ferredoxin. However, when the Bph dox ferredoxin was used to reconstitute a hybrid Nap dox, the enzyme was only 22% as active as the parental enzyme. These data are discussed in terms of the potential use of Nap dox for the development of enhanced chlorobiphenyl-degrading dioxygenases. Received: 15 October 1998 / Received revision: 21 January 1999 / Accepted: 31 January 1999  相似文献   

18.
Indoleamine 2,3-dioxygenase (IDO) reacts with either oxygen or superoxide and tryptophan (trp) or other indoleamines while tryptophan 2,3-dioxygenase (TDO) reacts with oxygen and is specific for trp. These enzymes catalyze the rate-limiting step in the kynurenine (KYN) pathway from trp to quinolinic acid (QA) with TDO in kidney and liver and IDO in many tissues, including brain where it is low but inducible. QA, which does not cross the blood-brain barrier, is an excitotoxin found in the CNS during various pathologies and is associated with convulsions. We proposed that HBO-induced convulsions result from increased flux through the KYN pathway via oxygen stimulation of IDO. To test this, TDO and IDO of liver and brain, respectively, of Sprague Dawley rats were assayed with oxygen from 0 to 6.2 atm HBO. TDO activity was appreciable at even 30 microM oxygen and rose steeply to a maximum at 40 microM. Conversely, IDO had almost no detectable activity at or below 100 microM oxygen and maximum activity was not reached until about 1150 microM. (Plasma contains about 215 microM oxygen and capillaries about 20 microM oxygen when rats breathe air.) KYN was 60% higher in brains of HBO-convulsed rats compared to rats breathing air. While the oxygen concentration inside cells of rats breathing air or HBO is not known precisely, it is clear that the rate-limiting, IDO-catalyzed step in the brain KYN pathway (but not liver TDO) can be greatly accelerated in rats breathing HBO.  相似文献   

19.
M W Taylor  G S Feng 《FASEB journal》1991,5(11):2516-2522
Interferons have been shown to be potential anti-cancer agents and to inhibit tumor cell growth in culture. The in vivo mechanism of the anti-proliferative effect may be direct or indirect through the immune system; however, in vitro a primary mechanism of cytotoxicity is through the depletion of tryptophan. In particular, interferon-gamma (IFN-gamma) induces an enzyme of tryptophan catabolism, indoleamine 2,3-dioxygenase (IDO), which is responsible for conversion of tryptophan and other indole derivatives to kynurenine. The inhibitory effect of interferon on many intracellular parasites such as Toxoplasma gondii and Chlamydia trachomatis is by the same mechanism. Elevated kynurenine levels have been found in humans in a number of diseases and after interferon treatment, and the enzyme is induced in rodents after administration of interferon inducers, or influenza virus. IDO induction also occurs in vivo during rejection of allogeneic tumors, indicating a possible role for this enzyme in the tumor rejection process. The gene for IDO has been cloned and shown to be differentially regulated by IFN-alpha and IFN-gamma. IDO induction has been correlated with induction of GTP-cyclohydrolase, the key enzyme in pteridine biosynthesis. A direct role for IDO in pteridine synthesis has not been shown, and this parallel induction may reflect coordinate regulation of genes induced by IFN-gamma. A possible role for IDO in O2-radical scavenging and in inflammation is discussed.  相似文献   

20.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号