首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We describe a new scaffold-free three-dimensional (3D) cell culture model using cholesteryl ester based lyotropic liquid crystal (LC) substrates. Keratinocytes were deposited randomly on the LC surface where they self-assembled into 3D microtissues or keratinospheroids. The cell density required to form spheroids was optimized. We investigated cell viability using dead/live cell assays. The adhesion characteristics of cells within the microtissues were determined using histological sectioning and immunofluorescence staining. Fourier transform infrared spectroscopy (FTIR) was used to characterize the biochemistry of the keratinospheroids. We found that both cells and microtissues could migrate on the LC surface. The viability study indicated approximately 80% viability of cells in the microtissues up to 20 days of culture. Strong intercellular adhesion was observed in the stratification of the multi-layered microspheroids using field emission-scanning electron microscopy (FE-SEM) and histochemical staining. The cytoskeleton and vinculins of the cells in the microtissues were expressed diffusely, but the microtissues were enriched with lipids and nucleic acids, which indicates close resemblance to the conditions in vivo. The basic 3D culture model based on LC may be used for cell and microtissue migration studies in response to cytochemical treatment.  相似文献   

2.
Napolitano AP  Dean DM  Man AJ  Youssef J  Ho DN  Rago AP  Lech MP  Morgan JR 《BioTechniques》2007,43(4):494, 496-494, 500
Techniques that allow cells to self-assemble into three-dimensional (3-D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular--especially in fields such as stem cell research, tissue engineering, and cancer biology. Unfortunately, caveats involving scale, expense, geometry, and practicality have hindered the widespread adoption of these techniques. We present an easy-to-use, inexpensive, and scalable technology for production of complex-shaped, 3-D microtissues. Various primary cells and immortal cell lines were utilized to demonstrate that this technique is applicable to many cell types and highlight differences in their self-assembly phenomena. When seeded onto micromolded, nonadhesive agarose gels, cells settle into recesses, the architectures of which optimize the requisite cell-to-cell interactions for spontaneous self-assembly. With one pipeting step, we were able to create hundreds of uniform spheroids whose size was determined by seeding density. Multicellular tumor spheroids (MCTS) were assembled or grown from single cells, and their proliferation was quantified using a modified 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. Complex-shaped (e.g., honeycomb) microtissues of homogeneous or mixed cell populations can be easily produced, opening new possibilities for 3-D tissue culture.  相似文献   

3.
Growing three dimensional (3D) cells is an emerging research in tissue engineering. Biophysical properties of the 3D cells regulate the cells growth, drug diffusion dynamics and gene expressions. Scaffold based or scaffoldless techniques for 3D cell cultures are rarely being compared in terms of the physical features of the microtissues produced. The biophysical properties of the microtissues cultured using scaffold based microencapsulation by flicking and scaffoldless liquid crystal (LC) based techniques were characterized. Flicking technique produced high yield and highly reproducible microtissues of keratinocyte cell lines in alginate microcapsules at approximately 350 ± 12 pieces per culture. However, microtissues grown on the LC substrates yielded at lower quantity of 58 ± 21 pieces per culture. The sizes of the microtissues produced using alginate microcapsules and LC substrates were 250 ± 25 μm and 141 ± 70 μm, respectively. In both techniques, cells remodeled into microtissues via different growth phases and showed good integrity of cells in field-emission scanning microscopy (FE-SEM). Microencapsulation packed the cells in alginate scaffolds of polysaccharides with limited spaces for motility. Whereas, LC substrates allowed the cells to migrate and self-stacking into multilayered structures as revealed by the nuclei stainings. The cells cultured using both techniques were found viable based on the live and dead cell stainings. Stained histological sections showed that both techniques produced cell models that closely replicate the intrinsic physiological conditions. Alginate microcapsulation and LC based techniques produced microtissues containing similar bio-macromolecules but they did not alter the main absorption bands of microtissues as revealed by the Fourier transform infrared spectroscopy. Cell growth, structural organization, morphology and surface structures for 3D microtissues cultured using both techniques appeared to be different and might be suitable for different applications.  相似文献   

4.
Slow vascularization often impedes the viability and function of engineered bone replacements. Prevascularization is a promising way to solve this problem. In this study, a new process was developed by integrating microcarrier culture and coculture to fabricate pre‐vascularized bone microtissues with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs). Initially, coculture medium and cell ratio between MSCs and HUVECs were optimized in tissue culture plates concerning cell proliferation, osteogenesis and angiogenesis. Subsequently, cells were seeded onto CultiSpher S microcarriers in spinner flasks and subjected to a two‐stage (proliferative‐osteogenic) culture process for four weeks. Both cells proliferated and functioned well in chosen medium and a 1 : 1 ratio between MSCs and HUVECs was chosen for better angiogenesis. After four weeks of culture in spinner flasks, the microtissues were formed with high cellularity, evenly distributed cells and tube formation ability. While coculture with HUVECs exerted an inhibitory effect on osteogenic differentiation of MSCs, with downregulated alkaline phosphatase activity, mineralization and gene expression of COLI, RUNX2 and OCN, this could be attenuated by employing a delayed seeding strategy of HUVECs against MSCs during the microtissue fabrication process. Conclusion: Collectively, this work established an effective method to fabricate pre‐vascularized bone microtissues, which would lay a solid foundation for subsequent development of vascularized tissue grafts for bone regeneration.  相似文献   

5.
Recent studies using stem cells or cancer stem cells have revealed the importance of detecting minor populations of cells in blood or tissue and analyzing their biological characteristics. The only possible method for carrying out such procedures is fluorescence activated cell sorting (FACS). However, FACS has the following limitations. First, cells without an appropriate cell surface marker cannot be sorted. Second, the cells have to be kept alive during the sorting process in order to analyze their biological characteristics. If an intracellular antigen that was specific to a particular cell type could be stained with a florescent dye and then the cells can be sorted without causing RNA degradation, a more simple and universal method for sorting and analyzing cells with a specific gene expression pattern could be established since the biological characteristics of the sorted cells could then be determined by analyzing their gene expression profile. In this study, we established a basic protocol for messenger RNA quantification after FACS (FACS-mQ) targeting intracellular antigens. This method can be used for the detection and analysis of stem cells or cancer stem cells in various tissues.  相似文献   

6.
The production of mouse chimeras is a common step in the establishment of genetically modified animal strains. Chimeras also provide a powerful experimental tool for following cell behavior during both prenatal and postnatal development. This protocol outlines a simple and economical technique for the production of large numbers of mouse chimeras using traditional diploid morula<-->diploid embryonic stem (ES) cell aggregations. Additional steps are included to describe the procedures necessary to produce specialized tetraploid chimeras using tetraploid morula<-->diploid ES cell aggregations. This increasingly popular form of chimera produces embryos of nearly complete ES cell derivation that can be used to speed transgenic production or ask developmental questions. Using this protocol, mouse chimeras can be generated and transferred to pseudopregnant surrogate mothers in a 5-d period.  相似文献   

7.
Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.  相似文献   

8.
An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation. We report that stabilization of FGF2 levels using controlled release PLGA microspheres improves expression of stem cell markers, increases stem cell numbers and decreases spontaneous differentiation. The controlled release FGF2 additive reduces the frequency of media changes needed to maintain stem cell cultures, so that human embryonic stem cells and induced pluripotent stem cells can be maintained successfully with biweekly feedings.  相似文献   

9.
A precise understanding of processes managing heterologous protein production in vitro and in vivo is essential for the manufacture of sophisticated biopharmaceuticals as well as for future gene therapy and tissue engineering initiatives. Capitalizing on the gravity-enforced self-assembly of monodispersed cells into coherent (multicellular) microtissues we studied heterologous protein production of microtissues and monolayers derived from cell lines and primary cells engineered/transduced for (i) constitutive, (ii) proliferation-controlled, (iii) macrolide-, or (iv) gas-inducible expression of the human placental secreted alkaline phosphatase (SEAP) and of the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Specific productivity of cells assembled in microtissues was up to 20-fold higher than isogenic monolayer cultures. Diffusion across microtissues could be further increased by HUVEC-mediated vascularization. As well as higher specific protein productivities, microtissues were also more efficient than monolayer cultures in assembling transgenic lentiviral particles. Our results showed that mammalian cells embedded in a tissue-like three-dimensional (3D) microenvironment exhibit increased production capacity. This observation should be considered for gene therapy and tissue engineering scenarios as well as for biopharmaceutical manufacturing.  相似文献   

10.
Analysis of cell-specific gene expression patterns using microarrays can reveal genes that are differentially expressed in diseased and normal tissue, as well as identify genes associated with specialized cellular functions. However, the cellular heterogeneity of the tissues precludes the resolution of expression profiles of specific cell types. While laser capture microdissection (LCM) can be used to obtain purified cell populations, the limited quantity of RNA isolated makes it necessary to perform an RNA amplification step prior to microarray analysis. The linearity and reproducibility of two RNA amplification protocols--the Baugh protocol (Baugh et al., 2001, Nucleic Acids Res 29:E29) and an in-house protocol have been assessed by conducting microarray analyses. Cy3-labeled total RNA from the colorectal cell line Colo-205 was compared to Cy5-labeled Colo-205 amplified RNA (aRNA) generated with each of the two protocols, using a human 10K cDNA array. The correlation of the gene intensities between amplified and total RNA measured in the two channels of each microarray was 0.72 and 0.61 for the Baugh protocol and the in-house protocol, respectively. The two protocols were further evaluated using aRNA obtained from normal colonic crypt cross-sections isolated via LCM. In both cases a microarray profile representative of colonic mucosa was obtained; statistically, the Baugh protocol was superior. Furthermore, a substantial overlap between highly expressed genes in the Colo-205 cells and colonic crypts underscores the reliability of the microarray analysis of LCM-derived material. Taken together, these results demonstrate that LCM-derived tissue from histological specimens can generate abundant amounts of high-quality aRNA for subsequent microarray analysis.  相似文献   

11.
Cell based therapies for bone regeneration are an exciting emerging technology, but the availability of osteogenic cells is limited and an ideal cell source has not been identified. Amniotic fluid-derived stem cells (AFS) and bone-marrow derived mesenchymal stem cells (MSCs) were compared to determine their osteogenic differentiation capacity in both 2D and 3D environments. In 2D culture, the AFS cells produced more mineralized matrix but delayed peaks in osteogenic markers. Cells were also cultured on 3D scaffolds constructed of poly-ε-caprolactone for 15 weeks. MSCs differentiated more quickly than AFS cells on 3D scaffolds, but mineralized matrix production slowed considerably after 5 weeks. In contrast, the rate of AFS cell mineralization continued to increase out to 15 weeks, at which time AFS constructs contained 5-fold more mineralized matrix than MSC constructs. Therefore, cell source should be taken into consideration when used for cell therapy, as the MSCs would be a good choice for immediate matrix production, but the AFS cells would continue robust mineralization for an extended period of time. This study demonstrates that stem cell source can dramatically influence the magnitude and rate of osteogenic differentiation in vitro.  相似文献   

12.
从少量转染细胞中同时快速提取总RNA和基因组DNA   总被引:1,自引:0,他引:1  
采用4mol / L LiCl将DNA和RNA分相,建立了同时从少量转染细胞中快速提取细胞总RNA和大分子基因组DNA的方法.与以前的方法相比,本法快速、简便、经济,尤其适合应用在哺乳动物细胞基因表达与调控的研究中.  相似文献   

13.
Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10(-5) to 10(-2) per infected cell. These targeting frequencies are 1-4 logs higher than those obtained by conventional transfection or electroporation approaches. A wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. Optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by Southern blots. This protocol (from vector design through a single round of targeting and screening) can be completed in ~10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks.  相似文献   

14.
15.
Cardiovascular disease is the leading cause of death worldwide, and current treatments are ineffective or unavailable to majority of patients. Engineered cardiac tissue (ECT) is a promising treatment to restore function to the damaged myocardium; however, for these treatments to become a reality, tissue fabrication must be amenable to scalable production and be used in suspension culture. Here, we have developed a low-cost and scalable emulsion-based method for producing ECT microspheres from poly(ethylene glycol) (PEG)–fibrinogen encapsulated mouse embryonic stem cells (mESCs). Cell-laden microspheres were formed via water-in-oil emulsification; encapsulation occurred by suspending the cells in hydrogel precursor solution at cell densities from 5 to 60 million cells/ml, adding to mineral oil and vortexing. Microsphere diameters ranged from 30 to 570 μm; size variability was decreased by the addition of 2% poly(ethylene glycol) diacrylate. Initial cell encapsulation density impacted the ability for mESCs to grow and differentiate, with the greatest success occurring at higher cell densities. Microspheres differentiated into dense spheroidal ECTs with spontaneous contractions occurring as early as Day 10 of cardiac differentiation; furthermore, these ECT microspheres exhibited appropriate temporal changes in gene expression and response to pharmacological stimuli. These results demonstrate the ability to use an emulsion approach to encapsulate pluripotent stem cells for use in microsphere-based cardiac differentiation.  相似文献   

16.
Transfection of primary mammalian neural cells, such as human neural stem/precursor cells (hNSPCs), with commonly used cationic lipid transfection reagents has often resulted in poor cell viability and low transfection efficiency. Other mechanical methods of introducing a gene of interest, such as a "gene gun" or microinjection, are also limited by poor cell viability and low numbers of transfected cells. The strategy of using viral constructs to introduce an exogenous gene into primary cells has been constrained by both the amount of time and labor required to create viral vectors and potential safety concerns. We describe here a step-by-step protocol for transfecting hNSPCs using Amaxa's Nucleofector device and technology with electrical current parameters and buffer solutions specifically optimized for transfecting neural stem cells. Using this protocol, we have achieved initial transfection efficiencies of ~35% and ~70% after stable transfection. The protocol entails combining a high number of hNSPCs with the DNA to be transfected in the appropriate buffer followed by electroporation with the Nucleofector device.  相似文献   

17.
Genome-scale ChIP-chip analysis using 10,000 human cells   总被引:2,自引:0,他引:2  
  相似文献   

18.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.  相似文献   

19.
The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.  相似文献   

20.
Owing to its dual impact on tissue engineering (neovascularization of tissue implants) and cancer treatment (prevention of tumor-induced vascularization), management and elucidation of vascularization phenomena remain clinical priorities. Using a variety of primary human cells and (neoplastic) cell lines assembled in microtissues by gravity-enforced self-aggregation in hanging drops we (i) studied size and age-dependent VEGF production of microtissues in comparison to isogenic monolayer cultures, (ii) characterized the self-organization and VEGF-production potential of mixed-cell spheroids, (iii) analyzed VEGF-dependent capillary formation of human umbilical vein endothelial cells (HUVECs) cells coated onto several human primary cell spheroids, and (iv) profiled endostatin action on vascularization in human microtissues. Precise understanding of vascularization in human microtissues may foster advances in clinical tissue implant engineering, tumor treatment, as well as drug discovery and drug-function analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号