首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of glucagon-like peptide 1 (GLP-1) began more than two decades ago with the observations that anglerfish islet proglucagon messenger RNAs (mRNAs) contained coding sequences for two glucagon-related peptides arranged in tandem. Subsequent analyses revealed that mammalian proglucagon mRNAs encoded a precursor containing the sequence of pancreatic glucagon, intestinal glicentin and two glucagon-related peptides termed GLP-1 and GLP-2. Multidisciplinary approaches were then required to define the structure of biologically active GLP-1 7-36 amide and its role as an incretin, satiety hormone and, most recently, a neuroprotective peptide. This historial perspective outlines the use of traditional recombinant DNA approaches to derive the GLP-1 sequence and highlights the challenges and combination of clinical and basic science approaches required to define the physiology and pathophysiology of bioactive peptides discovered through genomics.  相似文献   

2.
3.
The endoproteolytic processing of proproteins in the secretory pathway depends on the expression of selected members of a family of subtilisin-like endoproteases known as the prohormone convertases (PCs). The main PC family members expressed in mammalian neuroendocrine cells are PC2 and PC1/3. The differential processing of proglucagon in pancreatic alpha-cells and intestinal L cells leads to production of distinct hormonal products with opposing physiological effects from the same precursor. Here we describe the establishment and characterization of a novel alpha-cell line (alphaTC-DeltaPC2) derived from PC2 homozygous null animals. The alphaTC-DeltaPC2 cells are shown to be similar to the well characterized alphaTC1-6 cell line in both morphology and overall gene expression. However, the absence of PC2 activity in alphaTC-DeltaPC2 leads to a complete block in the production of mature glucagon. Surprisingly, alphaTC-DeltaPC2 cells are able to efficiently cleave the interdomain site in proglucagon (KR 70-71). Further analysis reveals that alphaTC-DeltaPC2 cells, unlike alphaTC1-6 cells, express low levels of PC1/3 that lead to the generation of glicentin as well as low amounts of oxyntomodulin, GLP-1, truncated GLP-1, and N-terminally extended GLP-2. We conclude that alphaTC-DeltaPC2 cells provide additional evidence for PC2 as the major convertase in alpha-cells leading to mature glucagon production and provide a robust model for further analysis of the mechanisms of proprotein processing by the prohormone convertases.  相似文献   

4.
Mice homozygous for a deletion in the gene encoding prohormone convertase 2 (PC2) are generally healthy but have mild hypoglycemia and flat glucose-tolerance curves. Their islets show marked alpha (A)-cell hyperplasia, suggesting a possible defect in glucagon processing (Furuta, M., Yano, H., Zhou, A., Rouille, Y., Holst, J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H., and Steiner, D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 6646-6651). In this report we have examined the biosynthesis and processing of proglucagon in isolated islets from these mice via pulse-chase labeling and find that proglucagon undergoes essentially no processing in chase periods up to 8 h in duration. Only a small percent of cleavage at the sensitive interdomain site (residues 71 and 72) appears to occur. These observations thus conclusively demonstrate the essentiality of PC2 for the production of glucagon in the islet A-cells. Ultrastructural and immunocytochemical studies indicate the presence of large amounts of proglucagon in atypical appearing secretory granules in the hyperplastic and hypertrophic A-cells, along with morphological evidence of high rates of proglucagon secretion in PC2 null islets. These findings provide strong evidence that active glucagon is required to maintain normal blood glucose levels, counterbalancing the action of insulin at all times.  相似文献   

5.
Dysregulated glucagon secretion is a hallmark of type 2 diabetes (T2D). To date, few effective therapeutic agents target on deranged glucagon secretion. Family with sequence similarity 3 member D (FAM3D) is a novel gut-derived cytokine-like protein, and its secretion timing is contrary to that of glucagon. However, the roles of FAM3D in metabolic disorder and its biological functions are largely unknown. In the present study, we investigated whether FAM3D modulates glucagon production in mouse pancreatic alpha TC1 clone 6 (αTC1-6) cells. Glucagon secretion, prohormone convertase 2 (PC2) activity, and mitogen-activated protein kinase (MAPK) pathway were assessed. Exogenous FAM3D inhibited glucagon secretion, PC2 activity, as well as extracellular-regulated protein kinase 1/2 (ERK1/2) signaling and induced MAPK phosphatase 1 (MKP1) expression. Moreover, knockdown of MKP1 and inhibition of ERK1/2 abolished and potentiated the inhibitory effect of FAM3D on glucagon secretion, respectively. Taken together, FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. These results provide rationale for developing the therapeutic potential of FAM3D for dysregulated glucagon secretion and T2D.  相似文献   

6.
7.
The eukaryotic subtilisin prohormone convertase 2 (PC2) is known to require in vivo exposure to the neuroendocrine protein 7B2 in order to produce an enzymatically active species capable of proteolytic action on prohormone substrates. In the present study, we examined the role of the pentabasic site within 27-kDa 7B2 in this process. We prepared two His-tagged recombinant 7B2s by overexpression in bacteria: 7B2-Ser-Ser (SS), with an inactivating mutation in the CT peptide from Lys171-Lys172 (KK) to SS, rendering the CT peptide non-inhibitory; blockade-SS, a double mutant of both the CT peptide as well as of the pentabasic furin cleavage site. These purified proteins were used in a cell-free proPC2 activation assay. Both 7B2-SS as well as blockade-SS were able to facilitate the activation of proPC2 (as judged by efficient production of enzyme activity), suggesting that cleavage at the furin site is not required for 7B2s lacking inhibitory CT peptides. Plasmids encoding proPC2 and various 7B2s were transiently transfected into human embryonic kidney (HEK293) cells and PC2 enzymatic activity and CT forms in each overnight conditioned medium were measured. Cells transfected with proPC2 and wild-type 7B2 secreted CT peptide cleavage products, but cells transfected with proPC2 and the blockade mutant overwhelmingly secreted intact, 27-kDa, blockaded 7B2. Medium obtained from HEK293 cells transfected with proPC2 and either wild-type 7B2, 7B2-SS, or blockade-SS exhibited PC2 activity, but medium from cells expressing the 7B2 blockade mutant did not. We conclude that cleavage at the 7B2 furin consensus site is required to produce PC2 capable of efficient proteolytic inactivation of the CT peptide.  相似文献   

8.
Lamprey proglucagon and the origin of glucagon-like peptides.   总被引:3,自引:0,他引:3  
We characterized two proglucagon cDNAs from the intestine of the sea lamprey Petromyzon marinus. As in other vertebrates, sea lamprey proglucagon genes encode three glucagon-like sequences, glucagon, and glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). This observation indicates that all three glucagon-like sequences encoded by the proglucagon gene originated prior to the divergence of jawed and jawless vertebrates. Estimates of the rates of evolution for the glucagon-like sequences suggest that glucagon originated first, about 1 billion years ago, while GLP-1 and GLP-2 diverged from each other about 700 MYA. The two sea lamprey intestinal proglucagon cDNAs have differing coding potential. Proglucagon I cDNA encodes the previously characterized glucagon and the glucagon-like peptide GLP-1, while proglucagon II cDNA encodes a predicted GLP-2 and, possibly, a glucagon. The existence of two proglucagon cDNAs which differ with regard to their potential to encode glucagon-like peptides suggests that the lamprey may use differential gene expression as a third mechanism, in addition to alternative proteolytic processing and mRNA splicing, to regulate the production of proglucagon-derived peptides.  相似文献   

9.
Proglucagon is expressed in pancreatic α cells, intestinal L cells, and some hypothalamic and brainstem neurons. Tissue-specific processing of proglucagon yields three major peptide hormones as follows: glucagon in the α cells and glucagon-like peptides (GLP)-1 and -2 in the L cells and neurons. Efficient sorting and packaging into the secretory granules of the regulated secretory pathway in each cell type are required for nutrient-regulated secretion of these proglucagon-derived peptides. Our previous work suggested that proglucagon is directed into granules by intrinsic sorting signals after initial processing to glicentin and major proglucagon fragment (McGirr, R., Guizzetti, L., and Dhanvantari, S. (2013) J. Endocrinol. 217, 229–240), leading to the hypothesis that sorting signals may be present in multiple domains. In the present study, we show that the α-helices within glucagon and GLP-1, but not GLP-2, act as sorting signals by efficiently directing a heterologous secretory protein to the regulated secretory pathway. Biophysical characterization of these peptides revealed that glucagon and GLP-1 each encode a nonamphipathic, dipolar α-helix, whereas the helix in GLP-2 is not dipolar. Surprisingly, glicentin and major proglucagon fragment were sorted with different efficiencies, thus providing evidence that proglucagon is first sorted to granules prior to processing. In contrast to many other prohormones in which sorting is directed by ordered prodomains, the sorting determinants of proglucagon lie within the ordered hormone domains of glucagon and GLP-1, illustrating that each prohormone has its own sorting “signature.”  相似文献   

10.
In the small intestine, proglucagon is processed into the previously characterized peptide "glicentin" (proglucagon (PG) 1-69) and two smaller peptides showing about 50% homology with glucagon: glucagon-like peptide-1 and -2. It was assumed that the sites of post-translational cleavage in the small intestine of the proglucagon precursor were determined by pairs of basic amino acid residues flanking the two peptides. Earlier studies have shown that synthetic glucagon-like peptide-1 (GLP-1) synthesized according to the proposed structure (proglucagon 71-108 or because residue 108 is Gly, 72-107 amide) had no physiological effects, whereas a truncated from of GLP-1, corresponding to proglucagon 78-107 amide, strongly stimulated insulin secretion and depressed glucagon secretion. To determine the amino acid sequence of the naturally occurring peptide we isolated GLP-1 from human small intestine by hydrophobic, gel permeation, and reverse-phase high performance liquid chromatography. By analysis of composition and sequence it was determined that the peptide corresponded to PG 78-107. By mass spectrometry the molecular mass was determined to be 3295, corresponding to PG 78-107 amide. Furthermore, mass spectrometry of the methyl-esterified peptide showed an increase in mass compatible with the presence of alpha-carboxyl amidation. Thus, the gut-derived insulinotrophic hormone GLP-1 is shown to be PG 78-107 amide.  相似文献   

11.
Glucagon gene expression in vertebrate brain   总被引:2,自引:0,他引:2  
  相似文献   

12.
Glucagon is a peptide hormone of 29 amino acids encoded by a preprohormone which contains in tandem the sequences of glucagon and two additional glucagon-like peptides (GLPs) structurally related to glucagon and separated by intervening peptides. Glucagon arises by cleavage from the prohormone within the A cells of the pancreatic islets but in the intestine remains as part of a partially processed precursor (glicentin). To determine whether additional glucagon-like peptides are processed from preproglucagon and to analyze for potential cellular specificity in the processing of preproglucagon, we introduced and expressed a metallothionein-glucagon fusion gene in a fibroblast and two endocrine (pituitary and pancreatic islet) cell lines. Chromatographic analyses of cell extracts utilizing specific radioimmunoassays to chemically synthesized peptides demonstrate the liberation of intact glucagon, glicentin, GLP-I(1-37), GLP-I(7-37), GLP-II, and an intervening peptide amidated at its carboxyl terminus. The peptides were present in distinct yet different patterns in the two endocrine but not the fibroblast cell lines. The cell-specific liberation of the glucagon-like and intervening peptides suggests their potential as new bioactive peptides. The cellular specificity in the processing of preproglucagon indicates that the genetic determinants of the processing activity are complex and are expressed in a cell-specific manner.  相似文献   

13.
We used the fluorometric substrate, pGlu-Arg-Thr-Lys-Arg-MCA and the C-terminal peptide of human 7B2155–185, a specific inhibitor of prohormone convertase 2 (PC2), to specifically measure the enzymatic activity of the prohormone convertases, PC2. Using lysates from the pancreatic cell line, TC1-6 cells, which contain moderate levels of PC2 enzymatic activity, we determined that the PC2 assay was linear with respect to time of incubation and protein added and had a pH optimum of 5.5 and a calcium optimum of 2.5 mM. Rat pituitary contained high levels of PC2 enzymatic activity, while the hypothalamus and other brain regions contained moderate levels. This enzyme assay was used to document that both mice null for PC2 as well as mice null for the PC2 cofactor, 7B2, had only trace levels of PC2 activity in various brain regions, while mice heterozygous for these alleles had approximately half of the PC2 activity in most brain regions. PC2 enzymatic activity and PC2 mRNA levels were somewhat discordant suggesting that PC2 mRNA levels do not always reflect PC2 enzymatic activity.  相似文献   

14.
15.
Prohormone convertases (PCs) are proteinases that cleave inactive prohormones to biologically active peptides. Seven PCs have been identified; two of them, PC1/3 and PC2, have only been localized in neuroendocrine (NE) tissues; a third, furin, in both endocrine and exocrine tissues. We have studied the immunoreactivity of PC1/3, PC2 and furin in the four major NE cell types of the human pancreas by using double immunofluorescence techniques. The study also included the expression of NE secretory protein 7B2 (secretogranin V), a member of the granin family, which influences the function of PC2. The results showed that the three PCs and 7B2 were expressed only in endocrine pancreas, furin also in exocrine cells. Insulin (B) cells harboured PC1/3 and PC2, but not furin. Glucagon (A) cells were immunoreactive to all three PCs; all glucagon cells expressed PC2, but one subpopulation showed PC1/3 immunoreactivity and another furin. Only a few somatostatin (D) cells contained PC2, but no other proconvertase. Pancreatic polypeptide (PP) cells were non-reactive to all three PCs. 7B2 occurred only in insulin and glucagon cells. A varying co-localization pattern was observed between PCs and between PCs and 7B2, with the exception of PC1/3 and furin which were not co-localized. In conclusion, our study shows that PCs are localized in insulin and glucagon cells and do seem to be important in these cell types for processing of hormone and other protein precursors, especially chromogranins, but for the two other major cell types probably other enzymes are of importance.  相似文献   

16.
Rorsman P  Braun M  Zhang Q 《Cell calcium》2012,51(3-4):300-308
The glucoregulatory hormones insulin and glucagon are released from the β- and α-cells of the pancreatic islets. In both cell types, secretion is secondary to firing of action potentials, Ca(2+)-influx via voltage-gated Ca(2+)-channels, elevation of [Ca(2+)](i) and initiation of Ca(2+)-dependent exocytosis. Here we discuss the mechanisms that underlie the reciprocal regulation of insulin and glucagon secretion by changes in plasma glucose, the roles played by different types of voltage-gated Ca(2+)-channel present in α- and β-cells and the modulation of hormone secretion by Ca(2+)-dependent and -independent processes. We also consider how subtle changes in Ca(2+)-signalling may have profound impact on β-cell performance and increase risk of developing type-2 diabetes.  相似文献   

17.
The prohormone convertases play important roles in the maturation of neuropeptides and peptide hormone precursors. Prohormone convertase-2 (PC2) is the only convertase that requires the expression of another neuroendocrine protein, 7B2, for expression of enzyme activity. In this study, we determined that 7B2 can be phosphorylated in Rin cells (a rat insulinoma cell line) and cultured chromaffin cells, but not in AtT-20 cells (derived from mouse anterior pituitary). Phosphoamino acid analysis of Rin cell 7B2 indicated the presence of phosphorylated serine and threonine. Phosphorylation of Ser115 (located within the minimally active 36-residue peptide) was confirmed by mutagenesis, although Ser115 did not represent the sole residue phosphorylated. Two independent assays were used to investigate the effect of phosphorylated 7B2 on PC2 activation: the ability of 7B2 to bind to pro-PC2 was assessed by co-immunoprecipitation, and activation of pro-PC2 was assessed in a cell-free assay. Phosphorylated 7B2 was unable to bind pro-PC2, and the phosphorylated 7B2 peptide (residues 86-121, known to be the minimally active peptide for pro-PC2 activation) was impaired in its ability to facilitate the generation of PC2 activity in membrane fractions containing pro-PC2. In vitro phosphorylation experiments using Golgi membrane fractions showed that 7B2 could be phosphorylated by endogenous Golgi kinases. Golgi kinase activity was strongly inhibited by the broad-range kinase inhibitor staurosporine and partially inhibited by the protein kinase C inhibitor bisindolylmaleimide I, but not by the other protein kinase A, Ca2+/calmodulin-dependent kinase II, myosin light chain kinase, and protein kinase G inhibitors tested. We conclude that phosphorylation of 7B2 functionally inactivates this protein and suggest that this may be analogous to the phosphorylating inactivation of BiP, which impairs its ability to bind substrate.  相似文献   

18.
The B133 peptide (DSITKYFQMSLE, mouse laminin β1 chain 1319-1330) promotes cell attachment, and forms amyloid-like fibrils. Here, we evaluated the active core sequences using B133 deletion peptides. B133a, lacking the N-terminal Asp residue, promoted cell spreading via integrin α2β1, whereas B133g, lacking the C-terminal Glu residue, lost the activity. Congo red analysis using the truncated peptides determined that B133g forms amyloid-like fibrils but B133a did not. These results suggest that the N- and C-terminal amino acids contribute to integrin α2β1 binding and to fibril formation, respectively. Further analyses using the truncated peptides showed that the C-terminal eight residues (B133d: KYFQMSLE) are a minimum active sequence for integrin α2β1-mediated cell attachment and the N-terminal nine residues (B133i: DSITKYFQM) are critical for amyloid-like fibril formation. These results suggest that peptide B133 is multifunctional with two different active core sequences: integrin α2β1-mediated cell attachment and amyloid-like fibril formation. Moreover, alanine substitution analysis of B133a indicated that six amino acids, Ile, Thr, Tyr, Phe, Met, and Glu, are important for cell attachment activity. When the Ser residue at the 9th position of B133a was replaced with Ala, the cell attachment activity was enhanced. Further mutation analysis at the 9th position of B133a using various amino acids suggests that hydrophobic amino acids are effective for the integrin α2β1-mediated cell attachment activity. These findings define multifunctional and overlapping sites on the B133 peptide and are useful for designing multifunctional synthetic molecules.  相似文献   

19.
20.
Integrins are well characterized cell surface receptors for extracellular matrix proteins. Mapping integrin-binding sites within the fibrillar collagens identified GFOGER as a high affinity site recognized by α2β1, but with lower affinity for α1β1. Here, to identify specific ligands for α1β1, we examined binding of the recombinant human α1 I domain, the rat pheochromocytoma cell line (PC12), and the rat glioma Rugli cell line to our collagen Toolkit II and III peptides using solid-phase and real-time label-free adhesion assays. We observed Mg(2+)-dependent binding of the α1 I domain to the peptides in the following rank order: III-7 (GLOGEN), II-28 (GFOGER), II-7 and II-8 (GLOGER), II-18 (GAOGER), III-4 (GROGER). PC12 cells showed a similar profile. Using antibody blockade, we confirmed that binding of PC12 cells to peptide III-7 was mediated by integrin α1β1. We also identified a new α1β1-binding activity within peptide II-27. The sequence GVOGEA bound weakly to PC12 cells and strongly to activated Rugli cells or to an activated α1 I domain, but not to the α2 I domain or to C2C12 cells expressing α2β1 or α11β1. Thus, GVOGEA is specific for α1β1. Although recognized by both α2β1 and α11β1, GLOGEN is a better ligand for α1β1 compared with GFOGER. Finally, using biosensor assays, we show that although GLOGEN is able to compete for the α1 I domain from collagen IV (IC(50) ~3 μm), GFOGER is much less potent (IC(50) ~90 μm), as shown previously. These data confirm the selectivity of GFOGER for α2β1 and establish GLOGEN as a high affinity site for α1β1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号