首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli performs the oxidation of proline to glutamate in two catalytic steps using separate proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains. In the first reaction, the oxidation of proline is coupled to the reduction of ubiquinone (CoQ) by the PRODH domain, which has a β8α8-barrel structure that is conserved in bacterial and eukaryotic PRODH enzymes. The structural requirements of the benzoquinone moiety were examined by steady-state kinetics using CoQ analogs. PutA displayed activity with all the analogs tested; the highest kcat/Km was obtained with CoQ2. The kinetic mechanism of the PRODH reaction was investigated use a variety of steady-state approaches. Initial velocity patterns measured using proline and CoQ1, combined with dead-end and product inhibition studies, suggested a two-site ping-pong mechanism for PutA. The kinetic parameters for PutA were not strongly influenced by solvent viscosity suggesting that diffusive steps do not significantly limit the overall reaction rate. In summary, the kinetic data reported here, along with analysis of the crystal structure data for the PRODH domain, suggest that the proline:ubiquinone oxidoreductase reaction of PutA occurs via a rapid equilibrium ping-pong mechanism with proline and ubiquinone binding at two distinct sites.  相似文献   

3.
Rhodopseudomonas palustris metabolizes aromatic compounds derived from lignin degradation products and has the potential for bioremediation of xenobiotic compounds. We recently identified four possible solute-binding proteins in R. palustris that demonstrated binding to aromatic lignin monomers. Characterization of these proteins in the absence and presence of the aromatic ligands will provide unprecedented insights into the specificity and mode of aromatic ligand binding in solute-binding proteins. Here, we report the thermodynamic and structural properties of the proteins with aromatic ligands using isothermal titration calorimetry, small/wide angle x-ray scattering, and theoretical predictions. The proteins exhibit high affinity for the aromatic substrates with dissociation constants in the low micromolar to nanomolar range. The global shapes of the proteins are characterized by flexible ellipsoid-like structures with maximum dimensions in the 80–90-Å range. The data demonstrate that the global shapes remained unaltered in the presence of the aromatic ligands. However, local structural changes were detected in the presence of some ligands, as judged by the observed features in the wide angle x-ray scattering regime at q ∼0.20–0.40 Å−1. The theoretical models confirmed the elongated nature of the proteins and showed that they consist of two domains linked by a hinge. Evaluation of the protein-binding sites showed that the ligands were found in the hinge region and that ligand stabilization was primarily driven by hydrophobic interactions. Taken together, this study shows the capability of identifying solute-binding proteins that interact with lignin degradation products using high throughput genomic and biophysical approaches, which can be extended to other organisms.  相似文献   

4.
Vinod MP  Bellur P  Becker DF 《Biochemistry》2002,41(20):6525-6532
The multifunctional PutA flavoprotein from Escherichia coli is a peripherally membrane-bound enzyme that has both proline dehydrogenase (PDH) and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) activities. In addition to its enzymatic functions, PutA displays DNA-binding activity and represses proline catabolism by binding to the control region DNA of the put regulon (put intergenic DNA). Presently, information on structure-function relationships for PutA is derived from primary structure analysis. To gain further insight into the functional organization of PutA, our objective is to dissect PutA into different domains and to characterize them separately. Here, we report the characterization of a bifunctional proline dehydrogenase (PutA(669)) that contains residues 1-669 of the PutA protein. PutA(669) purifies as a dimer and has a PDH specific activity that is 4-fold higher than that of PutA. As anticipated, PutA(669) lacks P5CDH activity. At pH 7.5, an E(m) (E-FAD/E-FADH(-)) of -0.091 V for the two-electron reduction of PutA(669)-bound FAD was determined by potentiometric titrations, which is 15 mV more negative than the E(m) for PutA-bound FAD. The pH behavior of the E(m) for PutA(669)-bound FAD was measured in the pH range 6.5-9.0 at 25 degrees C and exhibited a 0.03 V/pH unit slope. Analysis of the DNA and membrane-binding properties of PutA(669) shows that it binds specifically to the put intergenic control DNA with a binding affinity similar to that of PutA. In contrast, we did not observe functional association of PutA(669) with membrane vesicles. We conclude that PutA(669) has FAD-binding and DNA-binding properties comparable to those of PutA but lacks a membrane-binding domain necessary for stable association with the membrane.  相似文献   

5.
6.
7.
UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 Å to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.  相似文献   

8.
9.
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.  相似文献   

10.
11.
We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of Tm = 52 °C, enhanced the protein thermostability by 36 °C (Tm = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000–25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500–3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed.  相似文献   

12.
PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to Δ1-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-γ-semialdehyde (the hydrolyzed form of Δ1-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD+-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed.  相似文献   

13.
P0 constitutes 50–60% of protein in peripheral nerve myelin and is essential for its structure and stability. Mutations within the P0 gene (MPZ) underlie a variety of hereditary neuropathies. MpzS63C transgenic mice encode a P0 with a serine to cysteine substitution at position 34 in the extracellular domain of mature P0 (P0S34C), associated with the hypomyelinating Déjérine-Sottas syndrome in human. S63C mice develop a dysmyelinating neuropathy, with packing defects in peripheral myelin. Here, we used x-ray diffraction to examine time-dependent packing defects in unfixed myelin. At ∼7 h post-dissection, WT and S63C(+/+) myelin showed native periods (175 Å) with the latter developing at most a few percent swollen myelin, whereas up to ∼50% of S63C(+/−) (mutant P0 on heterozygous P0 null background) or P0(+/−) myelin swelled to periods of ∼205 Å. In the same time frame, S63C(−/−) myelin was stable, remaining swollen at ∼210 Å. Surprisingly, treatment of whole S63C(−/−) nerves with a reducing agent completely reverted swollen arrays to native spacing and also normalized the swollen arrays that had formed in S63C(+/−) myelin, the genotype most closely related to the human disorder. Western blot revealed P0-positive bands at ∼27 and ∼50 kDa, and MALDI-TOF mass spectrometry showed these bands consisted of Ser34-containing peptides or P0 dimers having oxidized Cys34 residues. We propose that P0S34C forms ectopic disulfide bonds in trans between apposed Cys34 side chains that retard wrapping during myelin formation causing hypomyelination. Moreover, the new bonds create a packing defect by stabilizing swollen membrane arrays that leads to demyelination.  相似文献   

14.
Proline is converted to glutamate in two successive steps by the proline utilization A (PutA) flavoenzyme in gram-negative bacteria. PutA contains a proline dehydrogenase domain that catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate (P5C) and a P5C dehydrogenase domain that catalyzes the NAD+-dependent oxidation of P5C to glutamate. Here, we characterize PutA from Helicobacter hepaticus (PutAHh) and Helicobacter pylori (PutAHp) to provide new insights into proline metabolism in these gastrointestinal pathogens. Both PutAHh and PutAHp lack DNA binding activity, in contrast to PutA from Escherichia coli (PutAEc), which both regulates and catalyzes proline utilization. PutAHh and PutAHp display catalytic activities similar to that of PutAEc but have higher oxygen reactivity. PutAHh and PutAHp exhibit 100-fold-higher turnover numbers (~30 min−1) than PutAEc (<0. 3 min−1) using oxygen as an electron acceptor during catalytic turnover with proline. Consistent with increased oxygen reactivity, PutAHh forms a reversible FAD-sulfite adduct. The significance of increased oxygen reactivity in PutAHh and PutAHp was probed by oxidative stress studies in E. coli. Expression of PutAEc and PutA from Bradyrhizobium japonicum, which exhibit low oxygen reactivity, does not diminish stress survival rates of E. coli cell cultures. In contrast, PutAHp and PutAHh expression dramatically reduces E. coli cell survival and is correlated with relatively lower proline levels and increased hydrogen peroxide formation. The discovery of reduced oxygen species formation by PutA suggests that proline catabolism may influence redox homeostasis in the ecological niches of these Helicobacter species.  相似文献   

15.
Oscillatoria agardhii agglutinin (OAA) is a recently discovered cyanobacterial lectin that exhibits potent anti-HIV activity. Up to now, only its primary structure and carbohydrate binding data have been available. To elucidate the structural basis for the antiviral mechanism of OAA, we determined the structure of this lectin by x-ray crystallography at 1.2 Å resolution and mapped the specific carbohydrate recognition sites of OAA by NMR spectroscopy. The overall architecture of OAA comprises 10 β-strands that fold into a single, compact, β-barrel-like domain, creating a unique topology compared with all known protein structures in the Protein Data Bank. OAA sugar binding was tested against Man-9 and various disaccharide components of Man-9. Two symmetric carbohydrate-binding sites were located on the protein, and a preference for Manα(1–6)Man-linked sugars was found. Altogether, our structural results explain the antiviral activity OAA and add to the growing body of knowledge about antiviral lectins.  相似文献   

16.
The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of ∼1.9 Å in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265–279), on top of which lies a large “flap”-like domain (residues 105–140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.  相似文献   

17.
2,4-Diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens catalyzes hydrolytic carbon-carbon (C–C) bond cleavage of the antibiotic 2,4-diacetylphloroglucinol to form monoacetylphloroglucinol, a rare class of reactions in chemistry and biochemistry. To investigate the catalytic mechanism of this enzyme, we determined the three-dimensional structure of PhlG at 2.0 Å resolution using x-ray crystallography and MAD methods. The overall structure includes a small N-terminal domain mainly involved in dimerization and a C-terminal domain of Bet v1-like fold, which distinguishes PhlG from the classical α/β-fold hydrolases. A dumbbell-shaped substrate access tunnel was identified to connect a narrow interior amphiphilic pocket to the exterior solvent. The tunnel is likely to undergo a significant conformational change upon substrate binding to the active site. Structural analysis coupled with computational docking studies, site-directed mutagenesis, and enzyme activity analysis revealed that cleavage of the 2,4-diacetylphloroglucinol C–C bond proceeds via nucleophilic attack by a water molecule, which is coordinated by a zinc ion. In addition, residues Tyr121, Tyr229, and Asn132, which are predicted to be hydrogen-bonded to the hydroxyl groups and unhydrolyzed acetyl group, can finely tune and position the bound substrate in a reactive orientation. Taken together, these results revealed the active sites and zinc-dependent hydrolytic mechanism of PhlG and explained its substrate specificity as well.  相似文献   

18.
The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.  相似文献   

19.
The objective of the present work was to express a truncated form of Pseudomonas putida PutA that shows proline dehydrogenase (ProDH) activity. The putA gene encoding ProDH enzyme was cloned into pET23a vector and expressed in Escherichia coli strain BL-21 (DE3) plysS. The recombinant P. putida enzyme was biochemically characterized and its three dimensional structure was also predicted. ProDH encoding sequence showed an open reading frame of 1,035-bp encoding a 345 amino acid residues polypeptide chain. Purified His-tagged enzyme gave a single band with a molecular mass of 40 kDa on SDS-PAGE. The molecular mass of the isolated enzyme was found to be about 40 kDa by gel filtration. This suggested that the enzyme of interest consists of one subunit. The K m and V max values of recombinant P. putida ProDH were estimated to be 31 mM and 132 μmol/min, respectively. The optimum pH and temperature for the catalytic activity of the enzyme was about pH 8.5 and 30 °C. The modeling analysis of the three dimensional structure elucidated that Ser-165, Lys-195 and Ala-252 were key residues for the ProDH activity. This study provides data on the cloning, sequencing and recombinant expression of PutA ProDH domain from P. putida POS-F84.  相似文献   

20.
The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258–268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys258–Cys268 show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg2+ to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg492 and Glu493 in NTPDase1 by glycines in NTPDase3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号