首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease.  相似文献   

2.
Boer JL  Hausinger RP 《Biochemistry》2012,51(11):2298-2308
The Ni-containing active site of Klebsiella aerogenes urease is assembled through the concerted action of the UreD, UreE, UreF, and UreG accessory proteins. UreE functions as a metallochaperone that delivers Ni to a UreD-UreF-UreG complex bound to urease apoprotein, with UreG serving as a GTPase during enzyme activation. This study focuses on the role of UreF, previously proposed to act as a GTPase activating protein (GAP) of UreG. Sixteen conserved UreF surface residues that may play roles in protein-protein interactions were independently changed to Ala. When produced in the context of the entire urease gene cluster, cell-free extracts of nine site-directed mutants had less than 10% of the wild-type urease activity. Enrichment of the variant forms of UreF, as the UreE-F fusion proteins, uniformly resulted in copurification of UreD and urease apoprotein, whereas UreG bound to only a subset of the species. Notably, weakened interaction with UreG correlated with the low-activity mutants. The affected residues in UreF map to a distinct surface on the crystal structure, defining the UreG binding site. In contrast to the hypothesis that UreF is a GAP, the UreD-UreF-UreG-urease apoprotein complex containing K165A UreF exhibited significantly greater levels of GTPase activity than that containing the wild-type protein. Additional studies demonstrated the UreG GTPase activity was largely uncoupled from urease activation for the complex containing this UreF variant. Further experiments with these complexes provided evidence that UreF gates the GTPase activity of UreG to enhance the fidelity of urease metallocenter assembly, especially in the presence of the noncognate metal Zn.  相似文献   

3.
Urease plays a central role in the pathogenesis of Helicobacter pylori in humans. Maturation of this nickel metalloenzyme in bacteria requires the participation of the accessory proteins UreD (termed UreH in H. pylori), UreF, and UreG, which form sequential complexes with the urease apoprotein as well as UreE, a metallochaperone. Here, we describe the crystal structure of C‐terminal truncated UreF from H. pylori (residues 1–233), the first UreF structure to be determined, at 1.55 Å resolution using SAD methods. UreF forms a dimer in vitro and adopts an all‐helical fold congruent with secondary structure prediction. On the basis of evolutionary conservation analysis, the structure reveals a probable binding surface for interaction with other urease components as well as key conserved residues of potential functional relevance. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
脲酶能够催化尿素分解生成氨,在农业和医学领域中具有重要的意义。细菌脲酶蛋白包括结构蛋白(UreA、UreB和UreC)和辅助蛋白(UreD/UreH、UreE、UreF和UreG),它们在脲酶活化过程中各自具有独特的作用,结构蛋白形成脲酶活性中心,而辅助蛋白主要负责镍离子的传递。文中综述了细菌脲酶蛋白复合物的结构和功能,以及各蛋白之间如何相互作用完成其活化过程,以期为脲酶活性调控研究及脲酶抑制剂开发等提供理论指导。  相似文献   

5.
The molecular details of the protein complex formed by UreD, UreF, UreG, and UreE, accessory proteins for urease activation in the carcinogenic bacterium Helicobacter pylori, have been elucidated using computational modeling. The calculated structure of the complex supports the hypothesis of UreF acting as a GTPase activation protein that facilitates GTP hydrolysis by UreG during urease maturation, and provides a rationale for the design of new drugs against infections by ureolytic bacterial pathogens.  相似文献   

6.
UreF is a protein that plays a role in the in vivo urease activation as a chaperone involved in the insertion of two Ni(2+) ions in the apo-urease active site. The molecular details of this process are unknown. In the absence of any molecular information on the UreF protein class, and as a step toward the comprehension of the relationships between UreF function and structure, we applied a structural modeling approach to infer useful biochemical knowledge on Bacillus pasteurii UreF (BpUreF). Similarity searches and multiple alignment of UreF protein sequences indicated that this class of proteins has a low homology with proteins of known structure. Fold recognition methods were therefore used to identify useful protein structural templates to model the structure of BpUreF. In particular, the templates belong to the class of GTPase-activating proteins. Modeling of BpUreF based on these templates was performed using the program MODELLER. The structure validation yielded good statistics, indicating that the model is plausible. This result suggests a role for UreF in urease active site biosynthesis as a regulator of the activity of UreG, a small G protein involved in the in vivo apo-urease activation process and established to catalyze GTP hydrolysis.  相似文献   

7.
The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter.  相似文献   

8.
Helicobacter pylori UreF (HpUreF) is involved in the insertion of Ni2+ in the urease active site. The recombinant protein in solution is a dimer characterized by an extensive α-helical structure and a well-folded tertiary structure. HpUreF binds two Ni2+ ions per dimer, with a micromolar dissociation constant, as shown by calorimetry. X-ray absorption spectroscopy indicated that the Ni2+ ions reside in a five-coordinate pyramidal geometry comprising exclusively N/O-donor ligands derived from the protein, including one or two histidine imidazole and carboxylate ligands. Binding of Ni2+ does not affect the solution properties of the protein. Mutation to alanine of His229 and/or Cys231, a pair of residues located on the protein surface that interact with H. pylori UreD, altered the affinity of the protein for Ni2+. This result, complemented by the findings from X-ray absorption spectroscopy, indicates that the Ni2+ binding site involves His229, and that Cys231 has an indirect structural role in metal binding. An in vivo assay of urease activation demonstrated that H229A HpUreF, C231A HpUreF, and H229/C231 HpUreF are significantly less competent in this process, suggesting a role for a Ni2+ complex with UreF in urease maturation. This hypothesis was supported by calculations revealing the presence of a tunnel that joins the Cys-Pro-His metal binding site on UreG and an opening on the UreD surface, passing through UreF close to His229 and Cys231, in the structure of the H. pylori UreDFG complex. This tunnel could be used to transfer nickel into the urease active site during apoenzyme-to-holoenzyme activation.  相似文献   

9.
Helicobacter pylori produces a potent urease that is believed to play a role in the pathogenesis of gastroduodenal diseases. Four genes (ureA, ureB, ureC, and ureD) were previously shown to be able to achieve a urease-positive phenotype when introduced into Campylobacter jejuni, whereas Escherichia coli cells harboring these genes did not express urease activity (A. Labigne, V. Cussac, and P. Courcoux, J. Bacteriol. 173:1920-1931, 1991). Results that demonstrate that H. pylori urease genes could be expressed in E. coli are presented in this article. This expression was found to be dependent on the presence of accessory urease genes hitherto undescribed. Subcloning of the recombinant cosmid pILL585, followed by restriction analyses, resulted in the cloning of an 11.2-kb fragment (pILL753) which allowed the detection of urease activity (0.83 +/- 0.39 mumol of urea hydrolyzed per min/mg of protein) in E. coli cells grown under nitrogen-limiting conditions. Transposon mutagenesis of pILL753 with mini-Tn3-Km permitted the identification of a 3.3-kb DNA region that, in addition to the 4.2-kb region previously identified, was essential for urease activity in E. coli. Sequencing of the 3.3-kb DNA fragment revealed the presence of five open reading frames encoding polypeptides with predicted molecular weights of 20,701 (UreE), 28,530 (UreF), 21,744 (UreG), 29,650 (UreH), and 19,819 (UreI). Of the nine urease genes identified, ureA, ureB, ureF, ureG, and ureH were shown to be required for urease expression in E. coli, as mutations in each of these genes led to negative phenotypes. The ureC, ureD, and ureI genes are not essential for urease expression in E. coli, although they belong to the urease gene cluster. The predicted UreE and UreG polypeptides exhibit some degree of similarity with the respective polypeptides encoded by the accessory genes of the Klebsiella aerogenes urease operon (33 and 92% similarity, respectively, taking into account conservative amino acid changes), whereas this homology was restricted to a domain of the UreF polypeptide (44% similarity for the last 73 amino acids of the K. aerogenes UreF polypeptide). With the exception of the two UreA and UreB structural polypeptides of the enzyme, no role can as yet be assigned to the nine proteins encoded by the H. pylori urease gene cluster.  相似文献   

10.
In vivo urease metallocenter assembly in Klebsiella aerogenes requires the presence of several accessory proteins (UreD, UreF, and UreG) and is further facilitated by UreE. In this study, UreG was isolated and shown to be a monomer with an Mr of 21,814 +/- 20 based on gel filtration chromatography and mass spectrometric results. Although it contains a P-loop motif typically found in nucleotide-binding proteins, UreG did not bind or hydrolyze ATP or GTP, and it exhibited no affinity for ATP- and GTP-linked agarose resins. Site-directed mutagenesis of ureG allowed the substitution of Ala for Lys-20 or Thr-21 in the P-loop motif and resulted in the production of inactive urease in cells grown in the presence of nickel; hence, an intact P-loop may be essential for UreG to function in vivo. These mutant cells were unable to synthesize the UreD-UreF-UreG-urease apoprotein species that are thought to be the key urease activation complexes in the cell. An insoluble protein species containing UreD, UreF, and UreG (termed the DFG complex) was detected in cells carrying deletions in ureE and the urease structural genes. The DFG complex was solubilized in 0.5% Triton X-100 detergent, shown to bind to an ATP-linked agarose resin, and found to elute from the resin in the presence of Mg-ATP. In cells containing a UreG P-loop variant, the DFG complex was formed but did not bind to the nucleotide-linked resin. These results suggest that the UreG P-loop motif may be essential for nucleotide binding by the DFG complex and support the hypothesis that nucleotide hydrolysis is required for in vivo urease metallocenter assembly.  相似文献   

11.
Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid analysis for determining protein-protein interactions, UreF as bait identified four interacting sequences encoding UreH, whereas UreG as bait detected five UreE sequences. These results were confirmed by coimmunoprecipitation and beta-galactosidase assays. Native PAGE immunoblotting of H. pylori inner membranes showed interaction of UreA/B with UreI, whereas UreI deletion mutants lacked this protein interaction. Deletion of ureE-H did not affect this interaction with UreI. Hence, the accessory proteins UreE/G and UreF/H form dimeric complexes and UreA/B form a membrane complex with UreI, perhaps enabling assembly of the urease apoenzyme at the membrane surface and immediate urea access to intrabacterial urease to allow rapid periplasmic neutralization.  相似文献   

12.
An important step in Tn5 transposition requires transposase-transposase homodimerization to form a synaptic complex competent for cleavage of transposon DNA free from the flanking sequence. We demonstrate that the C-terminal helix of Tn5 transposase (residues 458-468 of 476 total amino acids) is required for synaptic complex formation during Tn5 transposition. Specifically, deletion of eight amino acids or more from the C terminus greatly reduces or abolishes synaptic complex formation in vitro. Due to this impaired synaptic complex formation, transposases lacking eight amino acids are also defective in the cleavage step of transposition. Interactions within the synaptic complex dimer interface were investigated by site-directed mutagenesis, and residues required for synaptic complex formation include amino acids comprising the dimer interface in the Tn5 inhibitor x-ray crystal structure dimer. Because the crystal structure dimer was hypothesized to be the inhibitory complex and not a synaptic complex, this result was surprising. Based on these data, models for both in vivo and in vitro synaptic complex formation are presented.  相似文献   

13.
In vivo activation of Klebsiella aerogenes urease, a nickel-containing enzyme, requires the presence of functional UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. These accessory proteins are proposed to be involved in metallocenter assembly (M. H. Lee, S. B. Mulrooney, M. J. Renner, Y. Markowicz, and R. P. Hausinger, J. Bacteriol. 174:4324-4330, 1992). A series of three UreD-urease apoprotein complexes are present in cells that express ureD at high levels, and these complexes are thought to be essential for in vivo activation of the enzyme (I.-S. Park, M. B. Carr, and R. P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994). In this study, we describe the effect of accessory gene deletions on urease complex formation. The ureE, ureF, and ureG gene products were found not to be required for formation of the UreD-urease complexes; however, the complexes from the ureF deletion mutant exhibited delayed elution during size exclusion chromatography. Because these last complexes were of typical UreD-urease sizes according to native gel electrophoretic analysis, we propose that UreF alters the conformation of the UreD-urease complexes. The same studies revealed the presence of an additional series of urease apoprotein complexes present only in cells containing ureD, ureF, and ureG, along with the urease subunit genes. These new complexes were shown to contain urease, UreD, UreF, and UreG. We propose that the UreD-UreF-UreG-urease apoprotein complexes represent the activation-competent form of urease apoprotein in the cell.  相似文献   

14.

Background

The gastric pathogen Helicobacter pylori relies on nickel-containing urease and hydrogenase enzymes in order to colonize the host. Incorporation of Ni2+ into urease is essential for the function of the enzyme and requires the action of several accessory proteins, including the hydrogenase accessory proteins HypA and HypB and the urease accessory proteins UreE, UreF, UreG and UreH.

Methods

Optical biosensing methods (biolayer interferometry and plasmon surface resonance) were used to screen for interactions between HypA, HypB, UreE and UreG.

Results

Using both methods, affinity constants were found to be 5 nM and 13 nM for HypA–UreE and 8 μM and 14 μM for UreG-UreE. Neither Zn2+ nor Ni2+ had an effect on the kinetics or stability of the HypA–UreE complex. By contrast, addition of Zn2+, but not Ni2+, altered the kinetics and greatly increased the stability of the UreE–UreG complex, likely due in part to Zn2+-mediated oligomerization of UreE. Finally our results unambiguously show that HypA, UreE and UreG cannot form a heterotrimeric protein complex in vitro; instead, HypA and UreG compete with each other for UreE recognition.

General significance

Factors influencing the pathogen's nickel budget are important to understand pathogenesis and for future drug design.  相似文献   

15.
Four accessory proteins (UreD, UreE, UreF, and UreG) are typically required to form the nickel-containing active site in the urease apoprotein (UreABC). Among the accessory proteins, UreD and UreF have been elusive targets for biochemical and structural characterization because they are not overproduced as soluble proteins. Using the best-studied urease system, in which the Klebsiella aerogenes genes are expressed in Escherichia coli, a translational fusion of ureE and ureF was generated. The UreEF fusion protein was overproduced as a soluble protein with a convenient tag involving the His-rich region of UreE. The fusion protein was able to form a UreD(EF)G-UreABC complex and to activate urease in vivo, and it interacted with UreD-UreABC in vitro to form a UreD(EF)-UreABC complex. While the UreF portion of UreEF is fully functional, the fusion significantly affected the role of the UreE portion by interrupting its dimerization and altering its metal binding properties compared to those of the wild-type UreE. Analysis of a series of UreEF deletion mutants revealed that the C terminus of UreF is required to form the UreD(EF)G-UreABC complex, while the N terminus of UreF is essential for activation of urease.  相似文献   

16.
Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)(3). To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.  相似文献   

17.
Urease, the most efficient enzyme so far discovered, depends on the presence of nickel ions in the catalytic site for its activity. The transformation of inactive apo-urease into active holo-urease requires the insertion of two Ni(II) ions in the substrate binding site, a process that involves the interaction of four accessory proteins named UreD, UreF, UreG and UreE. This study, carried out using calorimetric and NMR-based structural analysis, is focused on the interaction between UreE and UreG from Sporosarcina pasteurii, a highly ureolytic bacterium. Isothermal calorimetric protein–protein titrations revealed the occurrence of a binding event between SpUreE and SpUreG, entailing two independent steps with positive cooperativity (Kd1 = 42 ± 9 μM; Kd2 = 1.7 ± 0.3 μM). This was interpreted as indicating the formation of the (UreE)2(UreG)2 hetero-oligomer upon binding of two UreG monomers onto the pre-formed UreE dimer. The molecular details of this interaction were elucidated using high-resolution NMR spectroscopy. The occurrence of SpUreE chemical shift perturbations upon addition of SpUreG was investigated and analyzed to establish the protein–protein interaction site. The latter appears to involve the Ni(II) binding site as well as mobile portions on the C-terminal and the N-terminal domains. Docking calculations based on the information obtained from NMR provided a structural basis for the protein–protein contact site. The high sequence and structural similarity within these protein classes suggests a generality of the interaction mode among homologous proteins. The implications of these results on the molecular details of the urease activation process are considered and analyzed.  相似文献   

18.
19.
In vivo assembly of the Klebsiella aerogenes urease nickel metallocenter requires the presence of UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. Prior studies had shown that urease apoprotein exists in an uncomplexed form as well as in a series of UreD-urease (I.-S. Park, M.B. Carr, and R.P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994) and UreD-UreF-UreG-urease (I.-S. Park and R.P. Hausinger, J. Bacteriol. 177:1947-1951, 1995) apoprotein complexes. This study demonstrates the existence of a distinct series of complexes consisting of UreD, UreF, and urease apoprotein. These novel complexes exhibited activation properties that were distinct from urease and UreD-urease apoprotein complexes. Unlike the previously described species, the UreD-UreF-urease apoprotein complexes were resistant to inactivation by NiCl2. The bicarbonate concentration dependence for UreD-UreF-urease apoenzyme activation was significantly decreased compared with that of the urease and UreD-urease apoproteins. Western blot (immunoblot) analyses with polyclonal anti-urease and anti-UreD antibodies indicated that UreD is masked in the UreD-UreF-urease complexes, presumably by UreF. We propose that the binding of UreF modulates the UreD-urease apoprotein activation properties by excluding nickel ions from binding to the active site until after formation of the carbamylated lysine metallocenter ligand.  相似文献   

20.
In the human gastric bacterium Helicobacter pylori, two metalloenzymes, hydrogenase and urease, are essential for in vivo colonization, the latter being a major virulence factor. The UreA and UreB structural subunits of urease and UreG, one of the accessory proteins for Ni(2+) incorporation into apourease, were taken as baits for tandem affinity purification. The method allows the purification of protein complexes under native conditions and physiological expression levels of the bait protein. Furthermore the tandem affinity purification technology was combined with in vivo cross-link to capture transient interactions. The results revealed different populations of urease complexes: (i) urease captured during activation by Ni(2+) ions comprising all the accessory proteins and (ii) urease in association with metabolic proteins involved e.g. in ammonium incorporation and the cytoskeleton. Using UreG as a bait protein, we copurified HypB, the accessory protein for Ni(2+) incorporation into hydrogenase, that is reported to play a role in urease activation. The interactome of HypB partially overlapped with that of urease and revealed interactions with SlyD, which is known to be involved in hydrogenase maturation as well as with proteins implicated in the formation of [Fe-S] clusters present in the small subunit of hydrogenase. In conclusion, this study provides new insight into coupling of ammonium production and assimilation in the gastric pathogen and the intimate link between urease and hydrogenase maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号