首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown trout Salmo trutta populations of numerous Swiss rivers are declining. Sewage plant effluents are discussed as a possible cause. To investigate the influence of sewage plant effluents, brown trout as well as rainbow trout Oncorhynchus mykiss were exposed to 10% diluted waste water over a period of 12 months. The effects were compared to those on trout kept in commercial tap water. The mortality rate was low and no pathogenic bacteria or viruses were recorded in exposed and tap-water animals. Parasitological examination revealed a mild infestation with Gryodactylus sp. in all groups. Macroscopically and histologically, only minor changes in gills, skin, and kidney of exposed animals were found when compared to fish kept in tap water. Degenerative and inflammatory reactions in the liver of exposed animals were the most prominent findings. Several brown trout caught in the River Langete showed marked proliferative, degenerative and inflammatory lesions of gills, liver, and kidney. The results do not suggest that waste-water effects would explain the decrease of fish populations. However, it is conceivable that the effluents in combination with other factors in the river enhance the development of changes.  相似文献   

2.
Occurrence of Flavobacterium psychrophilum in fish farms and fish-farming environments was studied using agar plate cultivation, the immunoflourescence antibody technique (IFAT) and nested PCR. Characteristics of 64 F. psychrophilum isolates from rainbow trout Oncorhynchus mykiss, fish farm rearing water, ovarian fluid and wild fish were serotyped, ribotyped and compared biochemically. Virulence of F. psychrophilum isolates from different sources was compared by injection into rainbow trout. Additionally, the number of F. psychrophilum cells shed by naturally infected rainbow trout was determined. F. psychrophilum was detected and isolated from skin mucus, skin lesions and internal organs of diseased rainbow trout and from fish without clinical disease. The pathogen was also present in wild perch Perca fluviatilis, roach Rutilus rutilus, and ovarian fluids of farmed rainbow trout brood fish. Isolates were biochemically homogenous, excluding the capability to degrade elastin. Five different agglutination patterns with different antisera against F. psychrophilum were found among the isolates studied. Although several different ribopatterns were found (ClaI: 12 ribopatterns and HaeIII: 9 ribopatterns), ribotype A was the most dominant. Farmed rainbow trout brood fish carried a broad-spectrum of serologically and genetically different F. psychrophilum in ovarian fluids. Virulence of the tested isolates in rainbow trout varied and naturally infected rainbow trout shed 10(4) to 10(8) cells fish(-1) h(-1) of F. psychrophilum into the surrounding water.  相似文献   

3.
Soluble, defense lectins bind conserved microbial patterns leading to pathogen opsonization, enhanced phagocytosis and activation of complement. These immune functions, however, vary widely among individuals due to genetic and acquired differences affecting binding capacity or plasma concentration. Most evidence for the defensive function of soluble lectins is based on mammals, but several functionally homologous, but less well-characterized, lectins have been identified in fish. In this study, we compared binding of rainbow trout plasma ladderlectin to relevant, intact bacterial targets. A polyclonal antiserum raised against a synthetic peptide identical to the 20 N-terminal amino acids of the reduced 16 kDa rainbow trout ladderlectin subunit was used to detect plasma ladderlectin in immunoblots and indirect enzyme-linked immunosorbent assay (ELISA). Ladderlectin binding to Aeromonas salmonicida subsp. salmonicida, Aeromonas hydrophila, Yersinia ruckeri and Pseudomonas sp. was detected by PAGE and immunoblots of saccharide elutions from intact bacteria incubated in the presence of normal trout plasma. Although plasma concentrations of immunoreactive ladderlectin were low in the majority of trout, significant (P < 0.0001) variation between individual fish was observed in two separate populations. In addition, one population demonstrated a subset of individuals whose ladderlectin levels were approximately seven-fold higher than the population median. These findings indicate that rainbow trout have variable amounts of plasma ladderlectin capable of binding to the surfaces of several relevant bacterial targets.  相似文献   

4.
AIMS: To identify the dominant culturable and nonculturable microbiota of rainbow trout intestine. METHODS AND RESULTS: Microbial density of rainbow trout intestine was estimated by direct microscopic counts (4',6-diamidino-2-phenylindole, DAPI) and by culturing on tryptone soya agar (TSA). Differential gradient gel electrophoresis analysis of bacterial DNA from intestinal samples, re-amplification of bands and sequence analysis was used to identify the bacteria that dominated samples where aerobic counts were < or =2% of the DAPI counts. 16S rDNA gene sequences of 146 bacterial isolates and three sequences of uncultured bacteria were identified. A set of oligonucleotide probes was constructed and used to detect and enumerate the bacterial community structure of the gastrointestinal tract of rainbow trout by fluorescence in situ hybridization (FISH). Members of the gamma subclass of Proteobacteria (mainly Aeromonas and Enterobacteriaceae) dominated the bacterial population structure. Acinetobacter, Pseudomonas, Shewanella, Plesiomonas and Proteus were also identified together with isolates belonging to the beta subclass of Proteobacteria and Gram-positive bacteria with high and low DNA G + C content. In most samples, the aerobic count (on TSA) was 50-90% of the direct (DAPI) count. A bacterium representing a previously unknown phylogenetic lineage with only 89% 16S rRNA gene sequence similarity to Anaerofilum pentosovorans was detected in intestinal samples where aerobic counts were < or =2% of direct (DAPI) counts. Ten to 75% of the microbial population in samples with low aerobic counts hybridized (FISH) with a probe constructed against this not-yet cultured bacterium. CONCLUSIONS: Proteobacteria belonging to the gamma subclass dominated the intestinal microbiota of rainbow trout. However, in some samples the microflora was dominated by uncultivated, presumed anaerobic, micro-organisms. The bacterial population structure of rainbow trout intestine, as well as total bacterial counts, varied from fish to fish. SIGNIFICANCE AND IMPACT OF THE STUDY: Good correlation was seen between cultivation results and in situ analysis, however, a molecular approach was crucial for the identification of organisms uncultivated on TSA.  相似文献   

5.
The susceptibility of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta to Myxobolus cerebralis, the cause of salmonid whirling disease, was assessed following dosed exposures to the infectious stages (triactinomyxons). Parallel groups of age-matched brown trout and rainbow trout were exposed to 10, 100, 1000 or 10,000 triactinomyxons per fish for 2 h and then placed in aquaria receiving single pass 15 degrees C well water. Severity of infection was evaluated by presence of clinical signs (whirling and/or black tail), prevalence of infection, severity of microscopic lesions, and spore counts 5 mo after exposure. Clinical signs of whirling disease, including a darkened caudal region (black tail) and radical tail chasing swimming (whirling), occurred first among rainbow trout at the highest dose at 6 to 7 wk post exposure. Black tail and whirling occurred among rainbow trout receiving 1000 and 100 triactinomyxons per fish at 8 to 9 wk post exposure. Only 1 of 20 fish had a black tail among rainbow trout receiving 10 triactinomyxons per fish, although 30% of the fish were infected at 5 mo post exposure. Black tails were observed in brown trout at 1000 and 10,000 triactinomyxons per fish beginning at 11 and 7 wk post exposure, respectively. There was no evidence of the tail chasing swimming (whirling) in any group of brown trout. The prevalence of infection, spore numbers, and severity of microscopic lesions due to M. cerebralis among brown trout were less at each exposure dose when compared to rainbow trout. Infections were found among rainbow trout at all doses of exposure but only among brown trout exposed to doses of 100 triactinomyxons per fish or greater. Risk of infection analyses showed that rainbow trout were more apt to be infected at each exposure dose than brown trout. Spore counts reached 1.7 x 10(6) per head among rainbow trout at the highest dose of exposure compared to 1.7 x 10(4) at the same exposure dose among brown trout. Spore numbers increased with dose of exposure in rainbow trout but not in brown trout. As microscopic lesion scores increased from mild to moderate, spore numbers increased in rainbow trout but not brown trout. The mechanisms by which brown trout resist infections with M. cerebralis were not determined. Cellular immune functions, including those of eosinophilic granular leukocytes that were more prominent in brown trout than rainbow trout, may be involved.  相似文献   

6.
The effects of toxic exposures on the susceptibility of rainbow trout (Oncorhynchus mykiss) to saprolegniosis were evaluated. Fish were exposed to sublethal concentrations of copper (0.25 mg/liter), cyanide (0.07 mg/liter), ammonia (0.5 mg/liter), and nitrite (0.24 mg/liter) for 24 h. After exposure, the fish were challenged by Saprolegnia parasitica (3.6 x 10(sup6) zoospores per liter) for 10 min. Cortisol and cholesterol were used to indicate stress response. Similar increases of cortisol were found for the four tested chemicals. All fish with cortisol levels higher than 370 ng/ml developed the disease, while only 24% of the fish with cortisol levels lower than 370 ng/ml were infected. Cholesterol levels remained unchanged after toxic exposure. Increased susceptibilities to the pathogen were observed for ammonia (71%), copper (57%), nitrite (50%), and cyanide (33%). The increases in susceptibility as a result of cyanide and nitrite exposure could be explained by the stress response. For copper and ammonia, the combination of two different effects, the stress response and specific impairments of the defense mechanism of trout against saprolegniosis, should be considered.  相似文献   

7.
In order to test the ability to produce antibacterial substances within marine bacteria, prior to select potential probiotics for use in shellfish farming, we targeted a large collection of bacterial isolates (132 strains), brought from the clamRuditapes decussatus and 37 reference strains. First, we proceeded to their biochemical identification and the screening of antibiotic resistance profiles. Else, we investigated their inhibitory activityin vitro against several fish and shellfish pathogens, using two methods: the double-layer agar and the direct simultaneous antagonism methods. The results showed high frequencies of inhibitory producing bacteria (IPB) within the isolates. These bacteria (25%) were aerobic mesophylic bacteria belonging to various bacterial groups: 33.7% oxidase-positive Gram-negative bacteria, 7.4%Enterobacteriaceae and 28% lactic acid bacteria. Besides this group, nine strains produced strong inhibition effect. These bacteria belonged to:Aeromonas hydrophila, Aeromonas sobria, Pseudomonas cepacia, Vibrio sp,Serratia liquefaciens andLactobacillus rhamnosus. They were active against pathogenic bacteria belonging to the genera:Aeromonas, Pseudomonas andVibrio. These potential probiotics were submitted to further investigations prior to their introduction in larval shellfish farming.  相似文献   

8.
Bacterial infections caused by members of the genus Aeromonas, with a relatively high antibiotic resistance, are among the most common and troublesome diseases of fish raised in ponds with recirculation systems. In this study, carried out at an experimental aquaculture station in northern Portugal, 51 strains identified as belonging to the genus Aeromonas were isolated from 20 rainbow trout (Oncorhynchus mykiss) skin and kidney samples, as well as from raceway water samples. Macro- and microscopic examination of the fish tissues revealed lesions or cellular alterations in skin and kidney that seemed to correlate with the presence of those isolates. The sensitivity of all isolated strains to different groups of beta-lactam antibiotics (penicillins, cephalosporins, monobactams and carbapenems) was evaluated using the disc diffusion method. The highest rates of resistance were to amoxicillin, carbenicillin and ticarcillin. Unexpected resistance to imipenem, an antibiotic of clinical usage, was also detected, which suggests that resistance may have been transferred to the Aeromonas population from the environment.  相似文献   

9.
Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues.  相似文献   

10.
The antibacterial properties of the indigenous microflora of rainbow trout ( Oncorhynchus mykiss Walbaum) and the potential use of inhibitory bacteria as fish probiotics were investigated. A total of 1018 bacteria and yeasts were isolated on tryptone soy agar (TSA) from skin, gills and intestine. Forty-five of these inhibited growth of the fish pathogenic bacterium Vibrio anguillarum in a well diffusion assay. The antagonism was most prominent among Pseudomonas spp., as 28 (66%) of the antagonistic bacteria belonged to this genus, despite constituting only 15% of the total tested flora. As pseudomonads are typically siderophore producers, chrome azurol S (CAS) agar was used as a semi-selective medium for isolation of antagonistic bacteria. On this medium, 75% of the iron-chelating strains were inhibitory to V. anguillarum . Eight strains out of a subset of 11 antagonists caused a 3–6 log unit reduction in the density of V. anguillarum [measured by polymerase chain reaction (PCR) detection in a most probable number (MPN) regimen] in a broth co-culture assay. Survival of rainbow trout infected with vibriosis was improved 13–43% by six out of nine antagonistic strains tested in vivo. All disease-protecting strains were pseudomonads, isolated from CAS plates, whereas two Carnobacterium spp. that were antagonistic in in vitro well diffusion assays did not alter the accumulated mortality of rainbow trout. The addition of live bacterial cultures to fish-rearing water may thus improve survival of the fish; however, in vitro antagonism could not completely predict an in vivo effect. Further studies on the underlying mechanism of activity are required to design appropriate selection criteria for fish probiotic bacteria.  相似文献   

11.
Cold water strawberry disease (CWSD), or red mark syndrome (RMS), is a severe dermatitis affecting the rainbow trout Oncorynchus mykiss. The condition, which presents as multifocal, raised lesions on the flanks of affected fish, was first diagnosed in Scotland in 2003 and has since spread to England and Wales. Results of field investigations indicated the condition had an infectious aetiology, with outbreaks in England linked to movements of live fish from affected sites in Scotland. Transmission trials confirmed these results, with 11 of 149 and 106 of 159 naive rainbow trout displaying CWSD-characteristic lesions 104 to 106 d after being cohabited with CWSD-affected fish from 2 farms (Farm B from England and Farm C from Wales, respectively). The condition apparently has a long latency, with the first characteristic lesions in the previously naive fish not definitively observed until 65 d (650 day-degrees) post-contact with affected fish. Affected fish from both outbreak investigations and the infection trial were examined for the presence of viruses, oomycetes, parasites and bacteria using a combination of techniques and methodologies (including culture-independent cloning of PCR-amplified bacterial 16S rRNA genes from lesions), with no potentially causative infectious agent consistently identified. The majority of the cloned phylotypes from both lesion and negative control skin samples were assigned to Acidovorax-like beta-Proteobacteria and Methylobacterium-like alpha-Proteobacteria.  相似文献   

12.
The occurrence of Hexamita salmonis Moore, 1922 and Loma salmonae Putz, Hoffman and Dunbar, 1965 was investigated at 10 sites on the R. Itchen (five for brown trout only, three for rainbow trout only, and two for both brown trout and rainbow trout) and at three of its nine fish farms (two for rainbow trout, one for brown trout). Hexamita salmonis was recorded in brown trout from three river sites and the farm, and in rainbow trout from both farms and four river sites. Prevalence of Hexamita salmonis in farmed rainbow trout was higher than in farmed brown trout and was consistent with the former species being more susceptible to infection. H. salmonis was at significantly higher prevalence in rainbow trout from farm no. 5 than farm no. 2 for three size classes of fish. In wild brown trout and feral rainbow trout, the highest prevalences of H. salmonis were recorded at sites in the vicinity of farm no. 2. This distribution was consistent with an area of naturally high infection levels, and with infected fish unintentionally released from farm no. 2 serving as a source of infection, the infection subsequently becoming established in the river fish. Loma salmonae was recorded in wild brown trout and in rainbow trout from both farms. This appears to be the first recording of this parasite from British salmonids and also the first recording of the parasite from brown trout. The distribution of the parasite (particularly the prevalence being higher at farm no. 2 than farm no. 5) was consistent with it being introduced into the R. Itchen via rainbow trout from farm no. 2 (and probably no. 3) much of whose stock derived from imported Californian 'Shasta' rainbow trout.  相似文献   

13.
Interspecific differences in the stress response of fish may be due, in part, to differences in the sensitivity of target tissues to cortisol. The relative response of brown and rainbow trout to a standardized dose of cortisol was assessed by monitoring condition (K factor), the number of circulating lymphocytes and mortality due to disease, following cortisol treatment. Cortisol implantation resulted in a significant decline in K factor and number of circulating lymphocytes in immature brown trout, but not in immature rainbow trout, despite plasma cortisol levels being similar in both cases. Cortisol implantation in mature brown and rainbow trout significantly increased the mortality rate due to bacterial and fungal infection compared with control fish. Furthermore, the mortality rate due to disease was significantly greater in brown trout than rainbow trout, despite both groups receiving similar doses of steroid.  相似文献   

14.
Tetracapsuloides bryosalmonae is a myxozoan parasite of salmonids and freshwater bryozoans, which causes proliferative kidney disease (PKD) in the fish host. To test which fish species are able to transmit T. bryosalmonae to bryozoans, an infection experiment was conducted with 5 PKD-sensitive fish species from different genera. Rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, brook trout Salvelinus fontinalis, grayling Thymallus thymallus and northern pike Esox lucius were cohabitated with T. bryosalmonae-infected Fredericella sultana colonies and then subsequently cohabitated with statoblast-reared parasite free Bryozoa. Statoblasts from infected colonies were tested by PCR to detect cryptic stages of T. bryosalmonae, which may indicate vertical transmission of the parasite. In this study, brown trout and brook trout were able to infect Bryozoa, while there was no evidence that rainbow trout and grayling were able to do so. Few interstitial kidney stages of the parasite were detected by immunohistochemistry in brown trout and brook trout, while rainbow trout and grayling showed marked proliferation of renal interstitial tissue and macrophages with numerous parasite cells. Intraluminal stages in the kidney tubules were only detected in brown trout and rainbow trout. In contrast to previous observations, pike was not susceptible to PKD in these trials according to the results of T. bryosalmonae-specific PCR. No DNA of T. bryosalmonae was detected in any statoblast.  相似文献   

15.
The aquatic fungi cultured from eggs, alevins and broodfish of brown trout Salmo trutta belonged to the genus Saprolegnia and were identified as S. diclina , S. australis , S. ferax , S. furcata , S. hypogyna , S. unispora and S. parasitica . The species obtained from infected eggs and alevins were different to those from infected fish. Several Saprolegnia species were isolated from eggs and alevins, whereas all the isolates obtained from broodfish were the pathogenic S. parasitica .  相似文献   

16.
对山西省朔县省虹鳟试验场1987年8月在亲鱼中爆发的一次流行病进行了病原菌分离、培养、毒力试验和详细的生理生化测定,确定点状气单胞菌为其病原菌。并对该菌胞外产物的致病性进行了研究,通过测定其溶血活性、酪蛋白酶活性、对鱼致死性以及对其引起的组织病理学变化的观察,初步确定了胞外产物与该菌侵袭力的相关性。  相似文献   

17.
More than 400 isolates from the intestine and the external surface of farmed Scophtalmus maximus as well as from fish food and hatchery water were screened for inhibitory effects against the fish pathogen Vibrio anguillarum HI 11345 and seven other fish pathogens. The bacteria with inhibitory effects were then characterized with regard to their sites of colonization, especially the intestinal regions and sites within each region. Of the total number of bacterial isolates from the intestine, 28% were inhibitory against V. anguillarum HI 11345. A marine biochemical assay was used to order the inhibitory strains into different phena. Most inhibitory bacteria were found in the rinse and mucus fractions of the gastrointestinal tract. No correlations among the different phena, site of colonization, and inhibitory effect could be found; however, a biochemical diversity was noted in the strains with an inhibitory effect. Of the isolates with an inhibitory effect against V. anguillarum HI 11345, 60% had an inhibitory effect on five other fish-pathogenic serotypes of V. anguillarum. Inhibitory effects of the isolates were also shown against Aeromonas salmonicida and Aeromonas hydrophila.  相似文献   

18.
Bacterial flora of fishes: A review   总被引:33,自引:0,他引:33  
Bacterial floras isolated from eggs, skin, gills, and intestines have been described for a limited number of fish species. Generally, the range of bacterial genera isolated is related to the aquatic habitat of the fish and varies with factors such as the salinity of the habitat and the bacterial load in the water. In many investigations, identification of isolates to the genus level only makes it difficult to determine the precise relationships of aquatic and fish microfloras. Bacteria recovered from the skin and gills may be transient rather than resident on the fish surfaces. Microfloras of fish intestines appear to vary with the complexity of the fish digestive system. The genera present in the gut generally seem to be those from the environment or diet which can survive and multiply in the intestinal tract, although there is evidence for a distinct intestinal microflora in some species. While obligate anaerobes have been recovered from carp and tilapia intestines, low ambient temperatures may prevent colonization by anaerobes in species such as rainbow trout.  相似文献   

19.
More than 400 isolates from the intestine and the external surface of farmed Scophtalmus maximus as well as from fish food and hatchery water were screened for inhibitory effects against the fish pathogen Vibrio anguillarum HI 11345 and seven other fish pathogens. The bacteria with inhibitory effects were then characterized with regard to their sites of colonization, especially the intestinal regions and sites within each region. Of the total number of bacterial isolates from the intestine, 28% were inhibitory against V. anguillarum HI 11345. A marine biochemical assay was used to order the inhibitory strains into different phena. Most inhibitory bacteria were found in the rinse and mucus fractions of the gastrointestinal tract. No correlations among the different phena, site of colonization, and inhibitory effect could be found; however, a biochemical diversity was noted in the strains with an inhibitory effect. Of the isolates with an inhibitory effect against V. anguillarum HI 11345, 60% had an inhibitory effect on five other fish-pathogenic serotypes of V. anguillarum. Inhibitory effects of the isolates were also shown against Aeromonas salmonicida and Aeromonas hydrophila.  相似文献   

20.
AIM: To develop a probiotic with effectiveness against Aeromonas sp., which was pathogenic to rainbow trout. METHODS AND RESULTS: When Bacillus subtilis AB1, which was obtained from fish intestine, was administered for 14 days to rainbow trout in feed at a concentration of 10(7) cells per gram either as viable, formalized or sonicated cells or as cell-free supernatant, the fish survived challenge with the pathogen. AB1 stimulated immune parameters, specifically stimulating respiratory burst, serum and gut lysozyme, peroxidase, phagocytic killing, total and alpha1-antiprotease and lymphocyte populations. CONCLUSIONS: Bacillus subtilis AB1 was effective as a probiotic at controlling infections by a fish-pathogenic Aeromonas sp. in rainbow trout. SIGNIFICANCE AND IMPACT OF THE STUDY: Disease control in fish is possible by means of the oral application of live and inactivated cells and their subcellular components with the mode of action reflecting stimulation of the innate immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号