首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Bridier  R. Briandet  V. Thomas 《Biofouling》2013,29(9):1017-1032
A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.  相似文献   

2.
细菌分泌胞外多糖附着在物体表面组成一个结构性群体即生物膜,导致对抗生素的强抵抗性和感染的迁延不愈。反过来,已形成的生物膜也可以分散为游离菌,许多环境物质能够促进该分散过程,并且这些物质与抗生素合用对生物膜有强大的对抗作用。从生物膜到浮游菌是个复杂的过程,目前关于铜绿假单胞菌生物膜分散的特征、机制、诱导分子等已经引起了学者的强烈兴趣,随着问题的深入研究必然会给人类治疗生物膜所致的难治性感染带来更大的意义。  相似文献   

3.
Bacteria have the remarkable ability to communicate as a group in what has become known as quorum sensing (QS), and this trait has been associated with important bacterial phenotypes, such as virulence and biofilm formation. Bacteria also have an incredible ability to evolve resistance to all known antimicrobials. Hence, although inhibition of QS has been hailed as a means to reduce virulence in a manner that is impervious to bacterial resistance mechanisms, this approach is unlikely to be a panacea. Here we review the evidence that bacteria can evolve resistance to quorum-quenching compounds.  相似文献   

4.
生物膜,也称为生物被膜,是指附着于有生命或无生命物体表面被细菌胞外大分子包裹的有组织的细菌群体。与浮游菌相比,生物膜内的细菌对抗生素的耐受性提高了10–1000倍,是造成目前细菌耐药的主要原因之一。作为一种新型抗菌制剂,抗菌肽的使用为生物膜感染的治疗提供了一种新的思路和手段。抗菌肽在抑制生物膜形成、杀灭生物膜内细菌以及消除成熟生物膜的过程中发挥了独特的优势。文中分析了近30年的数据,从细菌生物膜的结构入手,对抗菌肽可能的抗生物膜机理进行了综述,以期为抗菌肽临床治疗生物膜感染提供一定参考。  相似文献   

5.
Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.  相似文献   

6.
Surface-associated swarming motility is implicated in enhanced bacterial spreading and virulence, hence it follows that anti-swarming effectors could have clinical benefits. When investigating potential applications of anti-swarming materials it is important to consider whether the lack of swarming corresponds with an enhanced sessile biofilm lifestyle and resistance to antibiotics. In this study, well-defined tannins present in multiple plant materials (tannic acid (TA) and epigallocathecin gallate (EGCG)) and undefined cranberry powder (CP) were found to block swarming motility and enhance biofilm formation and resistance to tobramycin in Pseudomonas aeruginosa. In contrast, gallic acid (GA) did not completely block swarming motility and did not affect biofilm formation or tobramycin resistance. These data support the theory that nutritional conditions can elicit an inverse relationship between swarming motility and biofilm formation capacities. Although anti-swarmers exhibit the potential to yield clinical benefits, it is important to be aware of possible implications regarding biofilm formation and antibiotic resistance.  相似文献   

7.
细菌群体感应与细菌生物被膜形成之间的关系   总被引:2,自引:0,他引:2  
由于滥用抗生素,人类致病菌的耐药日益成为全球性的公共卫生难题。据统计,细菌感染80%以上与细菌生物被膜有关。近年来,有关细菌群体感应和细菌生物被膜的形成乃至机理已有报道,但就群体感应与细菌生物被膜的关系却报道较少,而揭示二者之间的关系可能会为解决致病菌耐药问题提供一个全新的思路。本文立足群体感应和细菌生物被膜的形成机制,结合本课题组的阶段性研究内容,拟阐明细菌群体感应与生物被膜形成的关系。  相似文献   

8.
大量研究报道生物被膜细菌对抗生素的耐药性是浮游菌的10–1 000倍,据报道细菌生物被膜是80%以上细菌感染的罪魁祸首,对医疗保健领域构成了严峻的挑战。植物提取物及其活性成分对细菌生物被膜有明显的抑制作用,包括减少生物被膜量、生物被膜活菌数以及清除已经成熟的生物被膜等。该文对这些有效的植物提取物及其活性成分进行了总结,并分析了其抗细菌生物被膜的作用机制。旨在为防治细菌生物被膜感染的植物类药物的开发提供参考。  相似文献   

9.
In many circumstances organisms invest in cooperative activities to increase their mutual fitness but are susceptible to cheats that obtain the benefits of cooperation without investment. Natural selection may favor cooperators that resist cheats, and cheats that avoid such resistance; in theory the coevolutionary interaction may be sustained and dynamic. Here, we report evidence of antagonistic coevolution between cooperators and cheats involved in biofilm formation by Pseudomonas fluorescens bacteria. Two distinct phenotypes occur in static culture tubes: one that can form a biofilm at the air–broth interface and thus obtain improved access to oxygen, and one that colonizes the broth phase but which can also invade, and weaken, the biofilm produced by the other type. Over serial passage, biofilm producers (considered here as cooperators) evolve to become better at resisting invasion, and biofilm nonproducers (cheats) evolve to be more efficient invaders. Each type has higher performance (resistance in the case of cooperators and biofilm invasion for cheats) in competition with isolates of the other type from their past compared to that from their future, indicating a dynamic coevolutionary interaction. Such coevolution may have important consequences for the maintenance of cooperation.  相似文献   

10.
Staphylococcus aureus is a common pathogen associated with nosocomial infections. It can persist in clinical settings and gain increased resistance to antimicrobial agents through biofilm formation. We have found that alpha-toxin, a secreted, multimeric, hemolytic toxin encoded by the hla gene, plays an integral role in biofilm formation. The hla mutant was unable to fully colonize plastic surfaces under both static and flow conditions. Based on microscopy studies, we propose that alpha-hemolysin is required for cell-to-cell interactions during biofilm formation.  相似文献   

11.
细菌的生物被膜是其在自然界中一种常见的生存状态。生物被膜的形成是细菌耐药性产生的主要机制之一,也是许多感染性疾病难以控制的重要原因。由于生物被膜在传染性疾病中的突出地位和细菌多重耐药性的蔓延,目前急需研制开发出能够调节生物被膜形成的新型抗菌药物。文中对调节生物被膜形成和发育的小分子抑制剂进行了详细的综述。  相似文献   

12.
病原体的耐药性很强,其生物被膜(biofilm,BF)的形成是导致耐药性的主要原因之一。生物被膜一旦形成,根除难度很大,会导致患者持久性感染,引发多种慢性疾病,并给全球医疗体系带来沉重负担。柱芳烃(pillararenes)是一类具有独特柱状结构的新型大环化合物,由于其在构建功能化和生物活性材料开发中的潜在应用引起人们广泛的关注。此外,它们在预防和控制抗生素耐药性(antimicrobial resistance,AMR)方面具有广阔的应用前景。本文综述了柱[5]芳烃衍生物对细菌病原菌的抗菌活性,并进一步揭示其在抗菌活性中的抑菌机制,尤其是对生物被膜的抑制作用。在此基础上,探索新的抑菌杀菌策略,用非传统药物以解决抗生素耐药性问题,以期为开发新的抗菌剂防控生物被膜或治疗细菌感染提供理论依据。  相似文献   

13.
The emergence of multidrug resistance has become an alarming and lifethreatening phenomenon for humans. Various mechanisms are involved in the development of resistance in bacteria towards antimicrobial compounds and immune system. Bacterial biofilm is a complicated, selfdefensive, rigid structure of bacteria crowded together to develop a selfrecessive nature, which enhances the ability to cause infections much easier in the living host. P. aeruginosa biofilm formation is supported by extracellular polymeric substances (EPS) such as exopolysaccharides, extracellular DNA (eDNA), proteins and biomolecules. Published evidences suggest that biofilm formation can also be the result of several other mechanisms such as cell signaling or communication. Bacterial biofilm is also regulated by strong intercellular communication known as Quorum Sensing (QS). It is a cellular communication mechanism involving autoinducers and regulators. In P. aeruginosa, Acyl Homoserine Lactone, the prime signaling molecule, controls approximately 300 genes responsible for various cellular functions, including its pathogenesis. The surrounding environment and metabolism have a specific effect on the biofilm and QS, thus, understanding the involvement of QS in the biofilm developing mechanism is still complicated and complex to understand. Therefore, this review will include basic knowledge of the biofilmforming mechanism and other regulatory factors involved in causing infections and diseases in the host organisms.  相似文献   

14.
微生物在生长过程中为适应生存环境而形成了生物膜,Dr.Costerton JW在生物膜方面的研究为我们开拓了微生物学的新领域。微生物生物膜是由微生物群体及其包被的细胞外多聚物和基质网组成,它们彼此黏附或者黏附到组织或物体的表面。微生物生物膜与微生物的耐药性形成、基因的转移以及引起机体的持续性感染等都密切相关。目前对生物膜的研究重点已经深入到微生物相互间的信号传递、致病基因的转移以及如何干预微生物生物膜的形成等方面。此外,在治理污水和环境保护工程、生物材料工程和食品工业等方面,微生物生物膜技术已经得到了应用。  相似文献   

15.
Genetics and genomics of Candida albicans biofilm formation   总被引:1,自引:0,他引:1  
Biofilm formation by the opportunistic fungal pathogen Candida albicans is a complex process with significant consequences for human health: it contributes to implanted medical device-associated infections. Recent advances in gene expression profiling and genetic analysis have begun to clarify the mechanisms that govern C. albicans biofilm development and acquisition of unique biofilm phenotypes. Such studies have identified candidate adhesin genes, and have revealed that biofilm drug resistance is multifactorial. Newly defined cell-cell communication pathways also have profound effects on biofilm formation. Future challenges include the elucidation of the structure and function of the extracellular exopolymeric substance that surrounds biofilm cells, and the extension of in vitro biofilm observations to newly developed in vivo biofilm models.  相似文献   

16.
Antimicrobial resistance of Pseudomonas aeruginosa biofilms   总被引:10,自引:0,他引:10  
Resistance to antimicrobial agents is the most important feature of biofilm infections. As a result, infections caused by bacterial biofilms are persistent and very difficult to eradicate. Although several mechanisms have been postulated to explain reduced susceptibility to antimicrobials in bacterial biofilms, it is becoming evident that biofilm resistance is multifactorial. The contribution of each of the different mechanisms involved in biofilm resistance is now beginning to emerge.  相似文献   

17.
Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.  相似文献   

18.
We present a novel analytical approach to describe biofilm processes considering continuum variation of both biofilm density and substrate effective diffusivity. A simple perturbation and matching technique was used to quantify biofilm activity using the steady-state diffusion-reaction equation with continuum variable substrate effective diffusivity and biofilm density, along the coordinate normal to the biofilm surface. The procedure allows prediction of an effectiveness factor, η, defined as the ratio between the observed rate of substrate utilization (reaction rate with diffusion resistance) and the rate of substrate utilization without diffusion limitation. Main assumptions are that (i) the biofilm is a continuum, (ii) substrate is transferred by diffusion only and is consumed only by microorganisms at a rate according to Monod kinetics, (iii) biofilm density and substrate effective diffusivity change in the x direction, (iv) the substrate concentration above the biofilm surface is known, and (v) the substratum is impermeable. With this approach one can evaluate, in a fast and efficient way, the effect of different parameters that characterize a heterogeneous biofilm and the kinetics of the rate of substrate consumption on the behavior of the biological system. Based on a comparison of η profiles the activity of a homogeneous biofilm could be as much as 47.8% higher than that of a heterogeneous biofilm, under the given conditions. A comparison of η values estimated for first order kinetics and η values obtained by numerical techniques showed a maximum deviation of 1.75% in a narrow range of modified Thiele modulus values. When external mass transfer resistance, is also considered, a global effectiveness factor, η(0) , can be calculated. The main advantage of the approach lies in the analytical expression for the calculation of the intrinsic effectiveness factor η and its implementation in a computer program. For the test cases studied convergence was achieved quickly after four or five iterations. Therefore, the simulation and scale-up of heterogeneous biofilm reactors can be easily carried out.  相似文献   

19.
白念珠菌是临床最常见的一种能产生生物被膜的致病真菌,所产生的生物被膜是导致高度耐药性和临床白念珠菌反复感染的直接原因.近年来,科学家们开始关注天然产物的抗生物被膜活性,以及不同药物联合应用的抗生物被膜效果,该文对抗白念珠菌生物被膜药物的研究进展作一综述.  相似文献   

20.
Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号