首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anapleurosis is the filling of the tricarboxylic acid cycle with four-carbon units. The common substrate for both anapleurosis and glucose phosphorylation in bacteria is the terminal glycolytic metabolite phosphoenolpyruvate (PEP). Here we show that Escherichia coli quickly and almost completely turns off PEP consumption upon glucose removal. The resulting buildup of PEP is used to quickly import glucose if it becomes available again. The switch-like termination of anapleurosis results from depletion of fructose-1,6-bisphosphate (FBP), an ultrasensitive allosteric activator of PEP carboxylase. E. coli expressing an FBP-insensitive point mutant of PEP carboxylase grow normally when glucose is steadily available. However, they fail to build up PEP upon glucose removal, grow poorly when glucose availability oscillates and suffer from futile cycling at the PEP node on gluconeogenic substrates. Thus, bacterial central carbon metabolism is intrinsically programmed with ultrasensitive allosteric regulation to enable rapid adaptation to changing environmental conditions.  相似文献   

2.
Incubation of purified phosphoenolpyruvate carboxylase from Zea mays L. leaves with dithiothreitol resulted in an almost 2-fold increase in the enzymic activity. The activated enzyme showed the same affinity for its substrates and the same sensitivity with respect to malate and oxalacetate inhibition. The activation induced by dithiothreitol was reversed by diamide, an oxidant of vicinal dithiols, suggesting that the redox state of disulfide bonds of the enzyme may be important in the expression of the maximal catalytic activity.

Titration of thiol groups before and after activation of maize phosphoenolpyruvate carboxylase by dithiothreitol shows an increase of the accessible groups from 8 to 12 suggesting that the reduction of two disulfide bonds accompanied the activation. The thiols exposed by the treatment with dithiothreitol were available to reagents in nondenatured enzyme and two of them were reoxidized to a disulfide bond by diamide. It is concluded that the mechanism of phosphoenolpyruvate carboxylase activation by dithiothreitol involves the net reduction of two disulfide bonds in the enzyme.

  相似文献   

3.
Phosphoenolpyruvate carboxylase (PEPCase) from light- and dark-adapted maize leaves was rapidly purified in the presence of L-malate and glycerol to apparent electrophoretic homogeneity by ammonium sulfate fractionation, hydroxylapatite chromatography, and fast-protein liquid chromatography on Mono Q. The resulting preparations were totally devoid of pyruvate, orthophosphate dikinase protein based on immunoblot analysis. Throughout the purification, both forms of PEPCase retained their different enzymatic properties. The specific activity of the light enzyme was consistently about twice that of the dark form when assayed at suboptimal (but physiological) pH (pH 7.0-7.3), and the former was also less sensitive to feedback inhibition by L-malate than that from darkened leaves under various conditions. Covalently bound phosphate and high-performance liquid chromatography-based phosphoamino acid analyses showed that both forms of purified PEPCase were phosphorylated exclusively on serine residues, but the degree of phosphorylation was about 50% greater in the light enzyme. Notably, incubation of purified PEPCase in vitro with exogenous alkaline phosphatase led to an increase in malate sensitivity and a decrease in specific activity of the light form enzyme to levels observed with the dark form, which was essentially not affected by phosphatase treatment. These results with the purified enzyme from light- and dark-adapted maize leaves indicate that the light-induced changes in activity and malate sensitivity of C4 PEPCase are related, at least in part, to the degree of covalent seryl phosphorylation of the protein in vivo.  相似文献   

4.
5.
Light modulation of maize leaf phosphoenolpyruvate carboxylase   总被引:1,自引:3,他引:1       下载免费PDF全文
Phosphoenolpyruvate carboxylase (PEPC) was extracted from maize (Zea mays L. cv Golden Cross Bantam T51) leaves harvested in the dark or light and was partially purified by (NH4)2SO4 fractionation and gel filtration to yield preparations that were 80% homogeneous. Malate sensitivity, PEPC activity, and PEPC protein (measured immunochemically) were monitored during purification. As reported previously, PEPC from dark leaves was more sensitive to malate inhibition compared to enzyme extracted from light leaves. Extraction and purification in the presence of malate stabilized the characteristics of the two forms. During gel filtration on Sephacryl S-300, all of the PEPC activity and PEPC protein emerged in a single high molecular weight peak, indicating that no inactive dissociated forms (dimers, monomers) were present. However, there was a slight difference between the light and dark enzymes in elution volume during gel filtration. In addition, specific activity (units at pH 7/milligram PEPC protein) decreased through the peak for both enzyme samples; because the dark enzyme emerged at a slightly higher elution volume, it contained enzyme with a relatively lower specific activity. The variation in specific activity of the dark enzyme corresponded with changes in malate sensitivity. Immunoblotting of samples with different specific activity and malate sensitivity, obtained from gel filtration, revealed only a single polypeptide with a relative molecular mass of 100,000. When the enzyme was extracted and purified in the absence of malate, characteristic differences of the light and dark enzymes were lost, the enzymes eluted at the same volume during gel filtration, and specific activity was constant through the peak. We conclude that maize leaf PEPC exists in situ as a tetramer of a single polypeptide and that subtle conformation changes can affect both enzymic activity and sensitivity to malate inhibition.  相似文献   

6.
The aim of this work was to investigate how light regulates the activity of phosphoenolpyruvate carboxylase in vivo in C4 plants. The properties of phosphoenolpyruvate carboxylase were investigated in extracts which were rapidly prepared (in less than 30 seconds) from darkened and illuminated leaves of Zea mays. Illumination resulted in a significant decrease in the S0.5(phosphoenolpyruvate) but there was no change in Vmax. The form of the enzyme from illuminated leaves was less sensitive to malate inhibition than was the form from darkened leaves. At low concentrations of phosphoenolpyruvate, the activity of the enzyme was strongly stimulated by glucose-6-phosphate, fructose-6-phosphate, triose-phosphate, alanine, serine, and glycine and was inhibited by organic acids. The enzyme was assayed in mixtures of metabolites at concentrations believed to be present in the mesophyll cytosol in the light and in the dark. It displayed low activity in a simulated `dark' cytosol and high activity in a simulated `light' cytosol, but activities were different for the enzyme from darkened compared to illuminated leaves.  相似文献   

7.
8.
9.
Wedding RT  Dole P  Chardot TP  Wu MX 《Plant physiology》1992,100(3):1366-1368
Phosphoenolpyruvate carboxylase purified from leaves of maize (Zea mays, L.) is sensitive to the presence of urea. Exposure to 2.5 m urea for 30 min completely inactivates the enzyme, whereas for a concentration of 1.5 m urea, about 1 h is required. Malate appears to have no effect on inactivation by urea of phosphoenolpyruvate carboxylase. However, the presence of 20 mm phosphoenolpyruvate or 20 mm glucose-6-phosphate prevents significant inactivation by 1.5 m urea for at least 1 h. The inactivation by urea is reversible by dilution. The inhibition by urea and the protective effects of phosphoenolpyruvate and glucose-6-phosphate are associated with changes in aggregation state.  相似文献   

10.
11.
Phosphoenolpyruvate carboxylase has been purified to homogeneity from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. The ratio of specific activities in crude extracts and the purified enzyme suggests that the enzyme is a major soluble protein in the tissue. The enzyme has a sedimentation coefficient (s20,w) of 12.3S and a molecular weight, determined by sedimentation equilibrium, of 400,000 daltons. Dissociation of the enzyme and electrophoresis on dodecyl sulfate polyacrylamide gels yields a single stained band which corresponds to a subunit weight of 99,000 daltons. Thus it appears that the native enzyme is composed of four identical or similar polypeptide chains.  相似文献   

12.
Maize leaf phosphoenolpyruvate carboxylase was completely and irreversibly inactivated by treatment with micromolar concentrations of Woodward's reagentK (WRK) for about 1 min. The inactivation followed pseudo-first-order reaction kinetics. The order of reaction with respect to WRK showed that the reagent causes formation of reversible enzyme inhibitor complex before resulting in irreversible inactivation. The loss of activity was correlated to the modification of a single carboxyl group per subunit, even though the reagent reacted with 2 carboxyl groups per protomer. Substrate PEP and PEP + Mg2+ offered substantial protection against inactivation by WRK. The modified enzyme showed a characteristic absorbance at 346 nm due to carboxyl group modification. The modified enzyme exhibited altered surface charge as seen from the elution profile on FPLC Mono Q anion exchange column. The modified enzyme was desensitized to positive and negative effectors like glucose-6-phosphate and malate. Pretreatment of PEP carboxylase with diethylpyrocarbonate prevented WRK incorporation into the enzyme, suggesting that both histidine and carboxyl groups may be closely physically related. The carboxyl groups might be involved in metal binding during catalysis by the enzyme.  相似文献   

13.
In vitro phosphorylation of maize leaf phosphoenolpyruvate carboxylase   总被引:3,自引:2,他引:1  
Budde RJ  Chollet R 《Plant physiology》1986,82(4):1107-1114
Autoradiography of total soluble maize (Zea mays) leaf proteins incubated with 32P-labeled adenylates and separated by denaturing electrophoresis revealed that many polypeptides were phosphorylated in vitro by endogenous protein kinase(s). The most intense band was at 94 to 100 kilodaltons and was observed when using either [γ-32P]ATP or [β-32P]ADP as the phosphate donor. This band was comprised of the subunits of both pyruvate, Pi dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPCase). PPDK activity was previously shown to be dark/light-regulated via a novel ADP-dependent phosphorylation/Pi-dependent dephosphorylation of a threonyl residue. The identity of the acid-stable 94 to 100 kilodalton band phosphorylated by ATP was established unequivocally as PEPCase by two-dimensional gel electrophoresis and immunoblotting. The phosphorylated amino acid was a serine residue, as determined by two-dimensional thin-layer electrophoresis. While the in vitro phosphorylation of PEPCase from illuminated maize leaves by an endogenous protein kinase resulted in a partial inactivation (~25%) of the enzyme when assayed at pH 7 and subsaturating levels of PEP, effector modulation by l-malate and glucose-6-phosphate was relatively unaffected. Changes in the aggregation state of maize PEPCase (homotetrameric native structure) were studied by nondenaturing electrophoresis and immunoblotting. Enzyme from leaves of illuminated plants dissociated upon dilution, whereas the protein from darkened tissue did not dissociate, thus indicating a physical difference between the enzyme from light- versus dark-adapted maize plants.  相似文献   

14.
15.
The specific activity of phosphoenolpyruvate (PEP) measured at a saturating level of substrate diminishes as the enzyme is diluted at about the same rate that specific light scattering by the diluted enzyme decreases. The presence of PEP in the assay causes an increase in activity with increasing dilution. This is accompanied by an increase in light scattering of the diluted enzyme. The reverse situation obtains with the addition of malate to assays: the activity decreases with increasing dilution but light scattering is not substantially changed, indicating that the enzyme is already brought to a smaller aggregate by the dilution itself. In this case, the inhibition by malate in the assay probably is the noncompetitive type not involved in regulatory control by malate. Glucose-6-phosphate in the range from 1 to 6 millimolar causes an increase in activity of the enzyme run at a substrate level less than Km, and an associated increase in light scattering is found, indicating an increase in the mean size of the enzyme. When PEP is added to a 1/80 diluted enzyme, light scattering increases and is associated with a more rapid activity of the enzyme. When malate is added to the same cuvette, the activity decreases and the light scattering diminishes, thus showing that the ligand response is immediately reversible. When malate is added first, followed by PEP, the reverse sequence of activity and light scattering change is observed.  相似文献   

16.
The hysteretic nature of phosphoenolpyruvate carboxylase from maize was investigated at pH 7 by (a) transient kinetic studies, (b) kinetics of inhibition by 2-PG, a structural analog of PEP, and (c) effect of 2-PG on equilibrium binding of Mg2+. The lag time as a function of substrate concentration was nonlinear with an oblique asymptote. During steady state, cooperative kinetics for Mg2+ was changed to hyperbolic kinetics in the presence of 2-PG. Studies on the equilibrium binding of Mg2+ with the help of an external fluorescent probe, 8-anilino-6-naphthalinosulfonate showed that the hyperbolic binding of Mg2+ was changed to cooperative binding in the presence of 2-PG. On the basis of these results along with the results presented in the preceding paper, a fully concerted sequential model with subunit interaction is proposed for PEPC.  相似文献   

17.
Phosphoenolpyruvate carboxylase catalyses the primary assimilation of CO(2) in Crassulacean acid metabolism plants. It is activated by phosphorylation, and this plays a major role in setting the day-night pattern of metabolism in these plants. The key factor that controls the phosphorylation state of phosphoenolpyruvate carboxylase is the activity of phosphoenolpyruvate carboxylase kinase. Recent work on Crassulacean acid metabolism plants has established this enzyme as a novel protein kinase and has provided new insights into the regulation of protein phosphorylation. Phosphoenolpyruvate carboxylase kinase is controlled by synthesis and degradation in response to a circadian oscillator. The circadian control of phosphoenolpyruvate carboxylase kinase can be overridden by changes in metabolite levels. The primary effect of the circadian oscillator in this system may be at the level of the tonoplast, and changes in kinase expression may be secondary to circadian changes in the concentration of a metabolite, perhaps cytosolic malate.  相似文献   

18.
Diurnal regulation of phosphoenolpyruvate carboxylase from crassula   总被引:3,自引:10,他引:3       下载免费PDF全文
Wu MX  Wedding RT 《Plant physiology》1985,77(3):667-675
Phosphoenolpyruvate carboxylase appears to be located in or associated with the chloroplasts of Crassula. As has been found with this enzyme in other CAM plants, a crude extract of leaves gathered during darkness and rapidly assayed for phosphoenolpyruvate carboxylase (PEPc) activity is relatively insensitive to inhibition by malate. After illumination begins, the PEPc activity becomes progressively more sensitive to malate. This enzyme also shows a diurnal change in activation by glucose-6-phosphate, with the enzyme from dark leaves more strongly activated than that from leaves in the light.

When the enzyme is partially purified in the presence of malate, the characteristic sensitivity of the day leaf enzyme is largely retained. Partial purification of the enzyme from dark leaves results in a small increase in sensitivity to malate inhibition.

Partially purified enzyme is found by polyacrylamide gel electrophoresis analysis to have two bands of PEPc activity. In enzymes from dark leaves, the slower moving band predominates, but in the light, the faster moving band is preponderant. Both of these bands are shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be composed of the same subunit of 103,000 daltons.

The enzyme partially purified from night leaves has a pH optimum of 5.6, and is relatively insensitive to malate inhibition over the range from pH 4.5 to 8. The enzyme from day leaves has a pH optimum of 6.6 and is strongly inhibited by malate at pH values below 7, but becomes insensitive at higher pH values.

Gel filtration of partially purified PEPc showed two activity peaks, one corresponding approximately to a dimer of the single subunit, and the other twice as large. The larger protein was relatively insensitive to malate inhibition, the smaller was strongly inhibited by malate.

Kinetic studies showed that malate is a mixed type inhibitor of the sensitive, day, enzyme, increasing Km for phosphoenolpyruvate and reducing Vmax. With the insensitive, night, enzyme, malate is a K type inhibitor, reducing the Km for phosphoenolpyruvate, but having little effect on Vmax. The inhibition of the insensitive enzyme by malate appears to be hysteretic, taking several minutes to be expressed during assay, probably indicating a change in the conformation or aggregation state of the enzyme.

Activation by glucose-6-phosphate is of the mixed type for the day form of the enzyme, causing both a decreased Km for phosphoenolpyruvate and an increased Vmax, but the night, or insensitive, form shows only an increase in Vmax in response to glucose-6-phosphate.

  相似文献   

19.
An antibody for phosphoenolpyruvate carboxylase was used to isolate and to quantitate the enzyme from greening maize (cv. KOU 6) leaves. The increase in enzyme activity during greening was due to de novo synthesis, which was paralleled by increases in enzyme protein and incorporation of leucine. The light-induced activity was due to one specific isoenzyme. The action spectrum for enzyme synthesis had red and blue peaks.  相似文献   

20.
Untransformed maize and tobacco plants and tobacco plants constitutively expressing nitrate reductase were grown with sufficient NO(3)- to support maximal growth. Four days prior to treatment the tobacco plants were deprived of nitrogen. Excised maize leaves and tobacco leaf discs were fed with either 40 mM KNO(3) or 40 mM KCl (control) in the light. Phosphoenolpyruvate (PEP) carboxylase (Case) activity was measured at 0.3 mM and 3 mM PEP. The light- induced increase in PEPCase V(max) was greater in maize than tobacco. Furthermore light decreased malate sensitivity in maize (which was N-replete) but not in N-deficient tobacco. NO(3)- treatment increased PEPCase V:(max) values in both species and decreased the sensitivity to inhibition by malate, but effects of NO(3)- were much more pronounced in tobacco than maize. PEPCase kinase activity was, however, greater in maize leaves NO(3)- than in the Cl(-)-treated controls, suggesting that it is responsive to leaf nitrogen supply. A correlation between foliar glutamine content and PEPCase activity was observed. It is concluded that PEPCase is sensitive to N metabolites which favour increased flow through the anapleurotic pathway in both C(3) and C(4) plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号