首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carcinoembryonic antigen (CEA) family consists of a large group of evolutionarily divergent glycoproteins. The secreted pregnancy-specific glycoproteins constitute a subgroup within the CEA family. They are predominantly expressed in trophoblast cells throughout placental development and are essential for a positive outcome of pregnancy, possibly by protecting the semiallotypic fetus from the maternal immune system. The murine CEA gene family member CEA cell adhesion molecule 9 (Ceacam9) also exhibits a trophoblast-specific expression pattern. However, its mRNA is found only in certain populations of trophoblast giant cells during early stages of placental development. It is exceptionally well conserved in the rat (over 90% identity on the amino acid level) but is absent from humans. To determine its role during murine development, Ceacam9 was inactivated by homologous recombination. Ceacam9(-/-) mice on both BALB/c and 129/Sv backgrounds developed indistinguishably from heterozygous or wild-type littermates with respect to sex ratio, weight gain, and fertility. Furthermore, the placental morphology and the expression pattern of trophoblast marker genes in the placentae of Ceacam9(-/-) females exhibited no differences. Both backcross analyses and transfer of BALB/c Ceacam9(-/-) blastocysts into pseudopregnant C57BL/6 foster mothers indicated that Ceacam9 is not needed for the protection of the embryo in a semiallogeneic or allogeneic situation. Taken together, Ceacam9 is dispensable for murine placental and embryonic development despite being highly conserved within rodents.  相似文献   

2.
The carcinoembryonic antigen (CEA) family consists of a large group of evolutionarily and structurally divergent glycoproteins. The murine CEACAM9 and CEACAM11-related proteins as well as the pregnancy-specific glycoproteins (PSG) are secreted members of the CEA family which are differentially expressed in fetal trophoblast cell populations during placental development. PSG are essential for a successful pregnancy, possibly by protecting the semiallotypic fetus from the maternal immune system. In contrast, Ceacam10 mRNA, coding for a protein identical in structure with CEACAM11-related proteins, is expressed in the maternal decidua surrounding the implantation site of the conceptus only during early stages of gestation between day 6.5 and day 10.5 postcoitum. To determine its role during murine development, we inactivated Ceacam10. Ceacam10(-/-) mice developed, like the previously established Ceacam9(-/-) mice, indistinguishably from wild-type littermates with respect to sex ratio, weight gain, and fertility. However, a small but significant reduction of the litter size by 23% was observed in Ceacam10(-/-) matings. Furthermore, combining the Ceacam9 and Ceacam10 null alleles, both located on chromosome 7, by meiotic recombination and subsequent mating of heterozygotes carrying both knockout alleles on one chromosome yielded wild-type and double knockout offspring at the expected Mendelian ratio. Taken together, both Ceacam10 and Ceacam9, alone or in combination, are not essential for either murine placental and embryonic development or for adult life.  相似文献   

3.
Using carcinoembryonic antigen (CEA) subgroup-specific degenerate PCR primers, we have identified three new CEA gene family member L/N exons (CGM9, CGM10, and CGM11) and all previously reported L/N exons of the CEA subgroup (CEA, BGP, NCA, CGM1, CGM2, CGM6, CGM7, and CGM8). This suggests that the CEA subgroup contains 11 genes. CGM9, CGM10, and CGM11 seem to be pseudogenes. A deletion of an asparagine in CGM9 results in loss of a glycosylation site, which is conserved throughout the CEA gene family. We have previously suggested the number of genes in the pregnancy-specific glycoprotein (PSG) subgroup to be 11, which together with this study indicates that the CEA gene family contains 22 genes in all. Parsimony analysis of the CEA subgroup interrelationships suggests that CGM7 occupies the most primitive position within the CEA subgroup, being a sister group to the rest. CEA, BGP, NCA, and CGM1 form a fairly well-supported group within the CEA subgroup.  相似文献   

4.
Carcinoembryonic antigen (CEA) family, a subgroup of the immunoglobulin (Ig) superfamily, is divided into two sub‐families: the CEA‐related cell adhesion molecules (CEACAM) and the pregnancy‐specific glycoproteins. The isoform CEACAM2 is expressed in mouse testis; in this study, we identified a novel isoform of Ceacam2, Ceacam2‐Long (Ceacam2‐L). CEACAM2‐L is different from CEACAM2 in that it has much longer cytoplasmic tail region. Ceacam2‐L starts to appear faintly in mouse testis after 3 weeks of postnatal development, and its expression level increased after 5 weeks. Immunoblot analysis confirmed the expression of CEACAM2‐L in the seminiferous epithelium of mouse testis. Immunohistochemical data showed that CEACAM2‐L was not observed on spermatogonia, spermatocytes, round spermatids, or Sertoli cells, but was seen at the plasma membrane of elongating spermatids in contact with extended cytoplasmic processes of Sertoli cells. CEACAM2‐L was not detected at the head region of elongating spermatids, where the apical ectoplasmic specialization is constructed. These data suggest that CEACAM2‐L might be a novel adhesion molecule contributing to cell‐to‐cell adhesion between elongating spermatids and Sertoli cells within the seminiferous epithelium. Mol. Reprod. Dev. 79: 843–852, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function, we inactivated murine Ceacam16 by homologous recombination. In young Ceacam16(-/-) mice the hearing threshold for frequencies below 10 kHz and above 22 kHz was raised. This hearing impairment progressed with age. A similar phenotype is observed in hearing-impaired members of Family 1070 with non-syndromic autosomal dominant hearing loss (DFNA4) who carry a missense mutation in CEACAM16. CEACAM16 was found in interdental and Deiters cells and was deposited in the tectorial membrane of the cochlea between postnatal days 12 and 15, when hearing starts in mice. In cochlear sections of Ceacam16(-/-) mice tectorial membranes were significantly more often stretched out as compared with wild-type mice where they were mostly contracted and detached from the outer hair cells. Homotypic cell sorting observed after ectopic cell surface expression of the carboxyl-terminal immunoglobulin variable-like N2 domain of CEACAM16 indicated that CEACAM16 can interact in trans. Furthermore, Western blot analyses of CEACAM16 under reducing and non-reducing conditions demonstrated oligomerization via unpaired cysteines. Taken together, CEACAM16 can probably form higher order structures with other tectorial membrane proteins such as α-tectorin and β-tectorin and influences the physical properties of the tectorial membrane. Evolution of CEACAM16 might have been an important step for the specialization of the mammalian cochlea, allowing hearing over an extended frequency range.  相似文献   

7.
8.
We recently cloned members of the murine carcinoembryonic antigen (CEA) gene family, some of which are differentially expressed during placental development. By intra- and interspecies sequence comparisons, we identified an element in the putative promoter and/or 5'-nontranslated region which is conserved within all human and rodent CEA-related genes analyzed so far. Using gel retardation analysis and DNaseI hypersensitive site mapping, we now show that ubiquitously expressed nuclear factors specifically bind to the conserved region derived from the mouse gene Cea-2 in vitro and probably also in vivo. Another DNaseI hypersensitive site lies within or close to a simple sequence motif [(GGA)n] located in the first intron of Cea-2. Such sequences have been reported to play a role in the regulation of certain genes. Therefore, this analysis has identified putative regulatory regions for Cea-2 and possibly CEA-related genes in general.  相似文献   

9.
Alterations in bone remodeling are a major public health issue, as therapeutic options for widespread bone disorders such as osteoporosis and tumor-induced osteolysis are still limited. Therefore, a detailed understanding of the regulatory mechanism governing bone cell differentiation in health and disease are of utmost clinical importance. Here we report a novel function of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a member of the immunoglobulin superfamily involved in inflammation and tumorigenesis, in the physiologic regulation of bone remodeling. Assessing the expression of all members of the murine Ceacam family in bone tissue and marrow, we found CEACAM1 and CEACAM10 to be differentially expressed in both bone-forming osteoblasts and bone-resorbing osteoclasts. While Ceacam10-deficient mice displayed no alteration in structural bone parameters, static histomorphometry demonstrated a reduced trabecular bone mass in mice lacking CEACAM1. Furthermore, cellular and dynamic histomorphometry revealed an increased osteoclast formation in Ceacam1-deficient mice, while osteoblast parameters and the bone formation rate remained unchanged. In line with these findings, we detected accelerated osteoclastogenesis in Ceacam1-deficient bone marrow cells, while osteoblast differentiation, as determined by mineralization and alkaline phosphatase assays, was not affected. Therefore, our results provide in vivo and in vitro evidence for a physiologic role of CEACAM1 in the regulation of osteoclastogenesis.  相似文献   

10.
The CEACAM1 glycoproteins (formerly called biliary glycoproteins; BGP, C-CAM, CD66a, or MHVR) are members of the carcinoembryonic antigen family of cell adhesion molecules. In the mouse, splice variants of CEACAM1 have either two or four immunoglobulin (Ig) domains linked through a transmembrane domain to either a short or a long cytoplasmic tail. CEACAM1 has cell adhesion activity and acts as a signaling molecule, and long-tail isoforms inhibit the growth of colon and prostate tumor cells in rodents. CEACAM1 isoforms serve as receptors for several viral and bacterial pathogens, including the murine coronavirus mouse hepatitis virus (MHV) and Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis in humans. To elucidate the mechanisms responsible for the many biological activities of CEACAM1, we modified the expression of the mouse Ceacam1 gene in vivo. Manipulation of the Ceacam1 gene in mouse embryonic stem cells that contained the Ceacam1a allele yielded a partial knockout. We obtained one line of mice in which the insert in the Ceacam1a gene had sustained a recombination event. This resulted in the markedly reduced expression of the two CEACAM1a isoforms with four Ig domains, whereas the expression of the two isoforms with two Ig domains was doubled relative to that in wild-type BALB/c (+/+) mice. Homozygous (p/p) Ceacam1a-targeted mice (Ceacam1aDelta4D) had no gross tissue abnormalities and were viable and fertile; however, they were more resistant to MHV A59 infection and death than normal (+/+) mice. Following intranasal inoculation with MHV A59, p/p mice developed markedly fewer and smaller lesions in the liver than +/+ or heterozygous (+/p) mice. The titers of virus produced in the livers were 50- to 100-fold lower in p/p mice than in +/p or +/+ mice. p/p mice survived a dose 100-fold higher than the lethal dose of virus for +/+ mice. +/p mice were intermediate between +/+ and p/p mice in susceptibility to liver damage, virus growth in liver, and susceptibility to killing by MHV. Ceacam1a-targeted mice provide a new model to study the effects of modulation of receptor expression on susceptibility to MHV infection in vivo.  相似文献   

11.
CEACAM1a glycoproteins are members of the immunoglobulin (Ig) superfamily and the carcinoembryonic antigen family. Isoforms expressing either two or four alternatively spliced Ig-like domains in mice have been found in a number of epithelial, endothelial, or hematopoietic tissues. CEACAM1a functions as an intercellular adhesion molecule, an angiogenic factor, and a tumor cell growth inhibitor. Moreover, the mouse and human CEACAM1a proteins are targets of viral or bacterial pathogens, respectively, including the murine coronavirus mouse hepatitis virus (MHV), Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis, as well as Moraxella catarrhalis in humans. We have shown that targeted disruption of the Ceacam1a (MHVR) gene resulting in a partial ablation of the protein in mice (p/p mice) led to reduced susceptibility to MHV-A59 infection of the modified mice in the BALB/c background. We have now engineered and produced a Ceacam1a-/- mouse that exhibits complete ablation of the CEACAM1a protein in every tissue where it is normally expressed. We report that 3-week-old Ceacam1a-/- mice in the C57BL/6 genetic background are fully resistant to MHV-A59 infection by both intranasal and intracerebral routes. Whereas virus-inoculated wild-type +/+ C57BL/6 mice showed profound liver damage and spinal cord demyelination under these conditions, Ceacam1a-/- mice displayed normal livers and spinal cords. Virus was recovered from liver and spinal cord tissues of +/+ mice but not of -/- mice. These results indicate that CEACAM1a is the sole receptor for MHV-A59 in both liver and brain and that its deletion from the mouse renders the mouse completely resistant to infection by this virus.  相似文献   

12.
The MHV-JHM strain of the murine coronavirus mouse hepatitis virus is much more neurovirulent than the MHV-A59 strain, although both strains use murine CEACAM1a (mCEACAM1a) as the receptor to infect murine cells. We previously showed that Ceacam1a−/− mice are completely resistant to MHV-A59 infection (E. Hemmila et al., J. Virol. 78:10156-10165, 2004). In vitro, MHV-JHM, but not MHV-A59, can spread from infected murine cells to cells that lack mCEACAM1a, a phenomenon called receptor-independent spread. To determine whether MHV-JHM could infect and spread in the brain independent of mCEACAM1a, we inoculated Ceacam1a−/− mice. Although Ceacam1a−/− mice were completely resistant to i.c. inoculation with 106 PFU of recombinant wild-type MHV-A59 (RA59) virus, these mice were killed by recombinant MHV-JHM (RJHM) and a chimeric virus containing the spike of MHV-JHM in the MHV-A59 genome (SJHM/RA59). Immunohistochemistry showed that RJHM and SJHM/RA59 infected all neural cell types and induced severe microgliosis in both Ceacam1a−/− and wild-type mice. For RJHM, the 50% lethal dose (LD50) is <101.3 in wild-type mice and 103.1 in Ceacam1a−/− mice. For SJHM/RA59, the LD50 is <101.3 in wild-type mice and 103.6 in Ceacam1a−/− mice. This study shows that infection and spread of MHV-JHM in the brain are dependent upon the viral spike glycoprotein. RJHM can initiate infection in the brains of Ceacam1a−/− mice, but expression of mCEACAM1a increases susceptibility to infection. The spread of infection in the brain is mCEACAM1a independent. Thus, the ability of the MHV-JHM spike to mediate mCEACAM1a-independent spread in the brain is likely an important factor in the severe neurovirulence of MHV-JHM in wild-type mice.  相似文献   

13.
Summary Various rodent and primate DNAs exhibit a stronger intra- than interspecies cross-hybridization with probes derived from the N-terminal domain exons of human and rat carcinoembryonic antigen (CEA)-like genes. Southern analyses also reveal that the human and rat CEA gene families are of similar complexity. We counted at least 10 different genes per human haploid genome. In the rat, approximately seven to nine different N-terminal domain exons that presumably represent different genes appear to be present. We were able to assign the corresponding genomic restriction endonuclease fragments to already isolated CEA gene family members of both human and rat. Highly similar subgroups, as found within the human CEA gene family, seem to be absent from the rat genome. Hybridization with an intron probe from the human nonspecific cross-reacting antigen (NCA) gene and analysis of DNA sequence data indicate the conservation of noncoding regions among CEA-like genes within primates, implicating that whole gene units may have been duplicated. With the help of a computer program and by calculating the rate of synonymous substitutions, evolutionary trees have been derived. From this, we propose that an independent parallel evolution, leading to different CEA gene families, must have taken place in, at least, the primate and rodent orders.  相似文献   

14.
15.
CEACAM1 is a member of the carcinoembryonic antigen (CEA) family. Isoforms of murine CEACAM1 serve as receptors for mouse hepatitis virus (MHV), a murine coronavirus. Here we report the crystal structure of soluble murine sCEACAM1a[1,4], which is composed of two Ig-like domains and has MHV neutralizing activity. Its N-terminal domain has a uniquely folded CC' loop that encompasses key virus-binding residues. This is the first atomic structure of any member of the CEA family, and provides a prototypic architecture for functional exploration of CEA family members. We discuss the structural basis of virus receptor activities of murine CEACAM1 proteins, binding of Neisseria to human CEACAM1, and other homophilic and heterophilic interactions of CEA family members.  相似文献   

16.
A long-range physical map of the carcinoembryonic antigen (CEA) gene family cluster, which is located on the long arm of chromosome 19, has been constructed. This was achieved by hybridization analysis of large DNA fragments separated by pulse-field gel electrophoresis and of DNA from human/rodent somatic cell hybrids, as well as the assembly of ordered sets of cosmids for this gene region into contigs. The different approaches yielded very similar results and indicate that the entire gene family is contained within a region located at position 19q13.1-q13.2 between the CYP2A and the D19S15/D19S8 markers. The physical linkage of nine genes belonging to the CEA subgroup and their location with respect to the pregnancy-specific glycoprotein (PSG) subgroup genes have been determined, and the latter are located closer to the telomere. From large groups of ordered cosmid clones, the identity of all known CEA subgroup genes has been confirmed either by hybridization using gene-specific probes or by DNA sequencing. These studies have identified a new member of the CEA subgroup (CGM8), which probably represents a pseudogene due to the existence of two stop codons, one in the leader and one in the N-terminal domain exons. The gene order and orientation, which were determined by hybridization with probes from the 5' and 3' regions of the genes, are as follows: cen/3'-CGM7-5'/3'-CGM2-5'/5'-CEA-3'/5'-NCA-3'/5'-CGM1- 3'/3'-BGP-5'/3'- CGM9-5'/3'-CGM6-5'/5'-CGM8-3'/PSGcluster/qter.  相似文献   

17.
From a library of sequences binding preferentially to nuclear matrix (matrix attachment regions, MARs), a fragment of about 300 bp in length (CEA (carcinoembryonic antigen)-MAR) was isolated and characterized. The CEA-MAR sequence was found in more than ten loci of chromosome 19 containing elements similar to genes of the CEA family. No sequences of this group were found on other human chromosomes. Two CEA-MAR-containing loci were sequenced, and sequences for another seven loci were found in GenBank. A comparative analysis of CEA-MARs and the flanking sequences is reported. Based on the sequence of the CEA-containing chromosome 19 loci, a hypothetical model of the domain structure of a 2-Mb chromosome region was constructed and the mutual arrangement of CEA-MARs and genes of CEA family was elucidated. The CEA-MARs were located 5-20 kb downstream of the CEA genes. These results suggest that the duplication unit of the CEA family may coincide with chromatin domains containing these genes.  相似文献   

18.
19.
The gene encoding the human tumor marker carcinoembryonic antigen (CEA) belongs to a gene family which can be subdivided into the CEA and the pregnancy-specific glycoprotein subgroups. The corresponding proteins are members of the immunoglobulin superfamily, characterized through the presence of one IgV-like domain and a varying number of IgC-like domains. Since the function of the CEA family is not well understood, we decided to establish an animal model in the rat to study its tissue-specific and developmental stage-dependent expression. To this end, we have screened an 18-day rat placenta cDNA library with a recently isolated fragment of a rat CEA-related gene. Two overlapping clones containing the complete coding region for a putative 709 amino acid protein (rnCGM1; Mr = 78,310) have been characterized. In contrast to all members of the human CEA family, this rat CEA-related protein consists of five IgV-like domains and only one IgC-like domain. This novel structure, which has been confirmed at the genomic level might have important functional implications. Due to the rapid evolutionary divergence of the rat and human CEA gene families it is not possible to assign rnCGM1 to its human counterpart. However, the predominant expression of the rnCGM1 gene in the placenta suggests that it could be analogous to one of the human pregnancy-specific glycoprotein genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号