首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An actinomycete producing oil‐like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The 1H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography–mass spectrometry (GC‐MS) analysis, the fatty acid methyl esters were mainly composed of C14‐C16 long‐chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.

Significance and Impact of the Study

Nowadays, production of biodiesel is based on plant oils, animal fats, algal oils and microbial oils. Lipid mostly consists of triacylglycerols (TAG), and conversion of these lipids into fatty acid short‐chain alcohol esters (methanol or ethanol) is the final step in biodiesel production. In this study, an oil‐producing Streptomyces strain was isolated from sheep faeces. The oil was composed of C14‐C16 long‐chain fatty acid methyl esters, triglycerides and monoglycerides. This is the first isolated strain‐producing biodiesel (FAME) directly from starch. Due to showing cellulase and xylanase activities, the strain would be helpful for converting renewable lignocellulose into biodiesel directly.  相似文献   

2.
Vegetable oils are an essential component of human diet, in terms of their health beneficial roles. Despite their importance, the fatty acid profile of most commonly used edible oil seed crop plants are imbalanced; this skewed ratio of fatty acids in the diet has been shown to be a major reason for the occurrence of cardiovascular and autoimmune diseases. Until recently, it was not possible to exert significant control over the fatty acid composition of vegetable oils derived from different plants. However, the advent of metabolic engineering, knowledge of the genetic networks and regulatory hierarchies in plants have offered novel opportunities to tailor-made the composition of vegetable oils for their optimization in regard to food functionality and dietary requirements. Sesame (Sesamum indicum L.) is one of the ancient oilseed crop in Indian subcontinent but its seed oil is devoid of balanced proportion of ω-6:ω-3 fatty acids. A recent study by our group has shed new lights on metabolic engineering strategies for the purpose of nutritional improvement of sesame seed oil to divert the carbon flux from the production of linoleic acid (C18:2) to α-linolenic acid (C18:3). Apart from that, this review evaluates current understanding of regulation of fatty acid biosynthetic pathways in sesame and attempts to identify the major options of metabolic engineering to produce superior sesame seed oil.  相似文献   

3.
Extracts of mature dark blue and white berries from two Tunisian Myrtus communis morphs growing at the same site were assessed for their essential‐oil and fatty‐acid compositions, phenolic contents, and antioxidant activities. The GC and GC/MS analyses of the essential oils allowed the identification of 33 constituents. The oils from the dark blue fruits showed high percentages of α‐pinene (11.1%), linalool (11.6%), α‐terpineol (15.7%), methyl eugenol (6.2%), and geraniol (3.7%). Myrtenyl acetate (20.3%) was found to be the major compound in the oils from white berries. GC Analysis of the pericarp and seed fatty acids showed that the polyunsaturated fatty acids constituted the major fraction (54.3–78.1%). The highest percentages of linoleic acid (78.0%) and oleic acid (20.0%) were observed in the seeds and the pericarps of the white fruits, respectively. The total phenol, flavonoid, and flavonol contents and the concentration of the eight anthocyanins, identified by HPLC analysis, were significantly higher in the dark blue fruits. All extracts showed a substantial antioxidant activity, assessed by the free radical‐scavenging activity and the ferric reducing power, with the dark blue fruit extracts being more effective.  相似文献   

4.
In this study, repellent and fumigant activities of Tanacetum tomentosum and Ta. dolichophyllum essential oils were investigated against Tribolium castaneum. Results showed that both oils had effective fumigant and repellent activities. Tanacetum tomentosum oil emerged as more potent than Ta. dolichophyllum oil with LC50 values of 6.85 and 4.32 μL/0.25 L air after 24 and 48 h of exposure, respectively. Ta. tomentosum oil also showed more repellent activity than Ta. dolichophyllum oil by exhibiting repellent activity in the range of 38.70–82.35%. Chemical analysis of both oils revealed that β‐bisabolene (50.0%) was the major component of Ta. tomentosum oil and that β‐eudesmol (31.4%) and α‐bisabolol (10.7%) were the major components of Ta. dolichophyllum oil. Doses of 40 and 80 μL/0.5 L air of both oils significantly protected 500 g of wheat grains for up to 6 months from insect infestation, without causing any side effects in the germination rates; the order of germination rates was Ta. tomentosum (89.45%) > Ta. dolichophyllum (86.78%). Thus, this study suggests that essential oils from Ta. tomentosum and Ta. dolichophyllum can be used as potential alternative botanical fumigants for controlling Tr. castaneum.  相似文献   

5.
The effects of two sodium salts on growth, fatty acids, and essential oil compositions were investigated in a medicinal and aromatic plant, Ocimum basilicum cultivated in hydroponic medium. Plants were subjected to an equimolar concentration of Na2SO4 (25 mM) and NaCl (50 mM) for 15 days. Our results showed that leaf growth rate was more depressed by 25 mM Na2SO4 than by 50 mM NaCl. The total fatty acid contents did not show any change in plants. α-Linolenic, palmitic, and linoleic acids were the major fatty acids. The identification of basil leaf fatty acids has not been previously studied and this work revealed the predominance of polyunsaturated fatty acids. Under both salts, leaf fatty acid composition remained unchanged. Regarding the essential oil yield, it decreased significantly by 28 % under 25 mM Na2SO4 and showed an increase by 27 % under 50 mM NaCl. The major volatile compound in leaves was linalool with 34.3 % of total essential oil constituents, followed by eugenol (19.8 %), 1.8-cineole (14.4 %) and methyl eugenol (5.2 %). Further, levels of eugenol and methyl eugenol were most modulated by salt, and the negative correlation between these two compounds reflects the stimulation of O-methyltransferase activity under both salts.  相似文献   

6.
Fumigant activity of essential oil vapours distilled from Zingiber officinale (L.) and Mentha pulegium (L.) was tested against eggs, larvae and adults of Callosobruchus maculatus (F.). Fumigant toxicity was assessed at 27?±?1?°C and 60?±?5% RH, in dark condition. The influence of different concentrations of the essential oil vapours on egg hatchability, larval and adult mortality was significant. Data probit analysis showed that lethal concentration of the essential oil to kill 50% of the population (LC50) for egg, larvae and adult was found to be 1.151, 2.336 and 2.183?μl/l air of Z. officinale, followed by 0.072, 0.113 and 0.093?μl/l air essential oil of M. pulegium, respectively. Between these essential oils, Z. officinale is almost more toxic than M. pulegium on all growth stages of C. maculatus. The present study suggests that essential oils from these medicinal plants may be potential grain protectants as botanical alternative fumigants and could be used in the management of various life stages of C. maculatus.  相似文献   

7.
Ailanthus altissima Mill. Swingle (Simaroubaceae), also known as tree of heaven, is used in the Chinese traditional medicine as a bitter aromatic drug for the treatment of colds and gastric diseases. In Tunisia, Ailanthus altissima is an exotic tree, which was introduced many years ago and used particularly as a street ornamental tree. Here, the essential oils of different plant parts of this tree, viz., roots, stems, leaves, flowers, and samaras (ripe fruits), were obtained by hydrodistillation. In total, 69 compounds, representing 91.0–97.2% of the whole oil composition, were identified in these oils by GC‐FID and GC/MS analyses. The root essential oil was clearly distinguishable for its high content in aldehydes (hexadecanal ( 1 ); 22.6%), while those obtained from flowers and leaves were dominated by oxygenated sesquiterpenes (74.8 and 42.1%, resp.), with caryophyllene oxide ( 4 ) as the major component (42.5 and 22.7%, resp.). The samara oil was rich in the apocarotenoid derivative hexahydrofarnesyl acetone ( 6 ; 58.0%), and the oil obtained from stems was characterized by sesquiterpene hydrocarbons (54.1%), mainly β‐caryophyllene (18.9%). Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by all the essential oils except of the samara oil at a dose of 1 mg/ml. The flower oil also showed a significant phytotoxic effect against lettuce germination at 0.04 and 0.4 mg/ml (?55.0±3.5 and ?85.0±0.7%, resp.). Moreover, the root and shoot elongation was even more affected by the oils than germination. The inhibitory effect of the shoot and root elongation varied from ?9.8 to ?100% and from ?38.6 to ?100%, respectively. Total inhibition of the elongation (?100%) at 1 mg/ml was detected for all the oils, with the exception of the samara oil (?74.7 and ?75.1% for roots and shoots, resp.).  相似文献   

8.
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very‐long‐chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn‐2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.  相似文献   

9.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosaspentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPa are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a ‘Max EPA’ fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA grou than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

10.
In this work, essential oils extracted from roots and aerial parts of Inula graveolens by hydrodistillation and their fractions obtained by chromatographic simplification were first investigated for their chemical composition by GC/MS and then evaluated for the first time for their repellency and contact toxicity properties against Tribolium castaneumadults. Twenty-eight compounds were identified in roots essential oil (REO), which accounted for 97.9 % of the total oil composition, with modhephen-8-β-ol (24.7 %), cis-arteannuic alcohol (14.8 %), neryl isovalerate (10.6 %) and thymol isobutyrate (8.5 %) as major constituents. Twenty-two compounds were found in the essential oil from aerial parts (APEO), which accounted for 93.9 % of the total oil, with borneol (28.8 %), caryophylla-4(14),8(15)-dien-6-ol (11.5 %), caryophyllene oxide (10.9 %), τ-cadinol (10.5 %) and bornyl acetate (9.4 %) as main compounds.REO and APEO displayed stronger repellency after 2 h of exposure (80.0 and 90.0 %, respectively) against T. castaneum at the concentration of 0.12 μL/cm2. After fractionation, fractions R4 and R5 exhibited greater effects (83.3 % and 93.3 %, respectively) than the roots essential oil. Furthermore, the fractions AP2 and AP3 showed higher repellency (93.3 and 96.6 %, respectively) than the aerial parts oil. The LD50 values of oils from roots and aerial parts topically applied were 7.44 % and 4.88 %, respectively. Results from contact toxicity assay showed that fraction R4 was more effective than the roots oil with LD50 value of 6.65 %. These results suggests that essential oils of roots and aerial parts from I. graveolens may be explored as potential natural repellent and contact insecticides against T. castaneum in stored products.  相似文献   

11.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

12.
Currant seeds, a by‐product of juice production, are recognized as a valuable source of oil rich in polyunsaturated fatty acids. We have evaluated 28 currant varieties for their oil content and fatty‐acid composition. The oil content in the seeds ranged from 18.2–27.7%, and no statistical difference between varieties of different fruit color were recorded. Furthermore, the estimated oil yields in the field production ranged from 26.4–212.4 kg/ha. The GC and GC/MS chemical profiles of the seed oils extracted from all examined varieties were common for currants. Linoleic acid (LA) was the major component, with contents ranging from 32.7–46.9% of total fatty acids, followed by α‐linolenic acid (ALA; 2.9–32.0 %), oleic acid (OA; 9.8–19.9%), γ‐linolenic acid (GLA; 3.3–18.5%), palmitic acid (PA; 4.4–8.1%), stearidonic acid (SDA; 2.2–4.7%), and stearic acid (SA; 1.2–2.4%). Quantitative differences in the fatty‐acid profiles between varieties of different fruit color were observed. Blackcurrant varieties showed significantly higher contents of LA, GLA, and PA than red and white currant varieties, whereas significantly higher amounts of ALA and OL were detected in the red and white varieties. Cluster analysis based on the chemical oil profiles joined the blackcurrants in one group, while most of the red and white cultivars joined in a second group at the same linkage distance.  相似文献   

13.
The essential oils from the aerial parts of catmint (Nepeta meyeri Benth.) were analyzed by hydrodistillation with GC–MS. Fourteen compounds were identified in the yellowish essential oil of the plant, representing more than 99.07% of the oil, of which the major components were found to be 4aα,7α,7aβ-nepetalactone (83.4%) and 4aα,7α,7aα-nepetalactone (8.83%). The oils were characterized by relatively high content of oxygenated monoterpenes, and were tested on the germination and antioxidative systems in early seedlings of seven weed species (Amaranthus retroflexus L., Bromus danthoniae Trin., Bromus intermedius Guss., Chenopodium album L., Cynodon dactylon L., Lactuca serriola L., and Portulaca oleracea L.) and autotoxicity. The essential oil of N. meyeri inhibited seed germination by more than 50% in three weed species (B. danthoniae, B. intermedius, and L. serriola) when applied at a concentration of 0.01%. When the same oils were applied at 0.02% concentration, the inhibition of germination was more than 70% in two weeds (C. album and C. dactylon) and was 100% in four weeds (A. retroflexus, B. danthoniae, B. intermedius, and L. serriola). The essential oils increased CAT activity in all the weed species and decreased SOD activity, except in A. retroflexus. POX activity did not exhibit a revealing situation in the weed species tested. The essential oils increased the level of lipid peroxidation and hydrogen peroxide (H2O2) concentration in all the weeds studied. Our results show that the essential oils of N. meyeri have an important phytotoxic effect on seed germination and, consequently, seedling growth by exhausting antioxidative system of the weeds. The phytotoxic activity of the essential oils may be attributed to their relatively high content of oxygenated monoterpenes, especially 4aα,7α,7aβ-nepetalactone. It can be suggest that the essential oils of N. meyeri have the potential to be used as a bioherbicide.  相似文献   

14.
Erucic acid (22:1) is a valuable renewable resource for the oleochemical industry. Currently available high erucic acid rapeseed cultivars contain only about 50% erucic acid in the seed oil. A substantial increase of the erucic acid content of the rapeseed oil could increase market prospects. The transgenic line TNKAT, over expressing the rapeseed fatty acid elongase gene (fae1) and expressing the Ld-LPAAT gene from Limnanthes douglasii was crossed with the line 6575-1 HELP (high erucic and low polyunsaturated fatty acid). A from the F1 plants produced population of 90 doubled haploid (DH) lines was tested in a greenhouse with three replicates. Parental lines TNKAT and 6575-1 HELP contained 46 and 50% erucic acid in the seed oil, respectively. In the DH population the erucic acid content ranged between 35 and 59%. The Ld-LPAAT + Bn-fae1.1 transgene showed a 1:1 segregation. The transgenic DH lines contained up to 8% trierucolyglycerol, but surprisingly had a by 2.3% lower erucic acid content compared to the non-transgenic segregants. Results indicated that the ectopically expressed fae1.1 gene may not be functional. The DH population also showed a large quantitative variation for PUFA content ranging from 6 to 28% (TNKAT: 21%, 6575-1 HELP: 8%). Regression analysis showed that in the DH population a 10% reduction in PUFA content led to a 4.2% increase in erucic acid content. Development of locus specific PCR primers for the two resident erucic acid genes fae1.1 (A-genome) and fae1.2 genes (C-genome) of rapeseed allowed sequencing of the respective alleles from TNKAT and 6575-1 HELP. Single nucleotide polymorphisms were only found for the fae1.1 gene. Use of allele specific fae1.1 PCR primers, however, did not reveal a significant effect of the fae1.1 allele from either parent on erucic acid content. The high erucic acid low polyunsaturated fatty acid DH lines and the fae1 locus specific primers developed in the present study should be useful in future studies aimed at increasing erucic acid content in rapeseed.  相似文献   

15.
This study was designed to compare the behavioral responses of Aedes aegypti to a single essential oil and to a mixture of two or three essential oils using an excito‐repellency test chamber. Mixtures were prepared from essential oils extracted from Litsea cubeba (LC), Litsea salicifolia (LS), and Melaleuca leucadendron (ML). In general, the mixture of essential oils produced a much stronger escape response by Ae. aegypti, regardless of the test conditions. No significant difference in escape responses was seen when the mixture of oils was compared with a standard commercial product containing DEET. Greater contact irritancy was seen from mixed oils of LC and LS than with other mixed oils. Mixtures of LC and LS at 0.075% showed the highest synergistic action (65.5% escaped) compared to that with unmixed oil alone at the same concentration (LC/20% and LS=32.2%). In addition, mixtures of LC and LS at 0.075% demonstrated the highest non‐contact repellency (62.7%) and showed a greater effect than the use of LC (20%) or LS (20.3%) alone. We conclude that mixtures of two essential oils show potential as active ingredients for mosquito repellents.  相似文献   

16.
The intraspecific variability of Artemisia herba‐alba and A. campestris essential oils and the evaluation of their antioxidant and antiacetylcholinesterase activities were determined. Artemisia herba‐alba essential oil was found rich in camphor (19.61%), α‐thujone (19.40%), β‐thujone (9.44%), chrysanthenone (9.26%), and trans‐sabinyl acetate (8.43%). The major compounds of A. campestris essential oil were germacrene D (16.38%), β‐pinene (16.33%), and limonene (9.17%). Significant variation in the essential oil composition was observed among populations of each species. The divergence between populations was attributed to the variation of some climatic factors such as altitude, annual rainfall, winter cold stress, summer precipitation, summer drought stress, evapotranspiration, and humidity. Artemisia herba‐alba and A. campestris essential oils exhibited promising antioxidant and antiacetylcholinesterase activities. The level of activity varied significantly according to the species and the essential oil. The highest scavenging activity (IC50 = 0.14 mg/ml) and the uppermost capacity to prevent β‐carotene bleaching (IC50 = 0.10 mg/ml) characterized A. campestris from population 6. A. campestris population 3 possessed the uppermost ability to reduce ferric ions (450.7 μmol Fe2+/g EO). The population 2 of A. campestris showed the strongest antiacetylcholinesterase activity (IC50 = 0.02 mg/ml). The variation of these activities between the essential oils was explained by their composition differences.  相似文献   

17.
The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l-1, with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l-1 NaCl and on the presence of at least 0.1 mol l-1 NaCl in the test mixture. Desoxycholate and up to 0.1 mol l-1 CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.  相似文献   

18.
The essential oils obtained by hydrodistillation of Geranium purpureum and G. phaeum were characterized by GC‐FID and GC/MS analyses (the former for the first time in general). In total, 154 constituents were identified, accounting for 89.0–95.8% of the detected GC peak areas. The investigated essential oils consisted mainly of fatty acids and fatty‐acid‐derived compounds (45.4–81.3%), with hexadecanoic acid and (E)‐phytol as the major components. The chemotaxonomic significance of the variations in the essential‐oil composition/production of the presently and previously investigated Geranium and highly related Erodium taxa from Serbia and Macedonia was assessed by multivariate statistical analyses. The main conclusions drawn from the high chemical similarity of the two genera, visible from the obtained dendrograms and biplots, confirm the close phylogenetic relationship between the investigated Geranium and Erodium taxa, i.e., that there is no great intergeneric oil‐composition variability. Changes in the composition and production of essential oils of the herein investigated taxa and 60 other randomly chosen species belonging to different plant genera were also statistically analyzed. The results put forward pro arguments for the oil‐yield–oil‐composition correlation hypothesis.  相似文献   

19.
Essential oils extracted from 17 higher plants belonging to different families were screened against Botryodiplodia theobromae and Colletotrichum gloeosporioides causing stem end rot disease and anthracnose disease in mango respectively. The essential oil of Eupatorium cannabinum was found to be fungitoxic in nature against both the mango-rotting fungi. Eupatorium oil was standardized through physico-chemical and fungitoxic properties. Gas Liquid Chromatography (GLC) analysis of the oil led to the identification of 16 components, which represented 77.97% of the oil. Germacrene D (16.11%) was found to be the major component. The oil showed a broad fungitoxic spectrum and was recorded to be more efficient than some synthetic fungicides. The oil also showed an inhibitory effect on pectinase and cellulase enzymes. The oil enhanced the shelf life of mango fruits by protecting from fungal rotting when tested as a fumigant. The LD50 of Eupatorium oil was found to be 22.01 ml/kg body weight on mammalian mice.  相似文献   

20.
Baobab seed oil contains specific fatty acids. Most of the studies on baobab fatty acids have been carried out singly and in isolation from each other, making it difficult to compare results through different species. The objective of the present study is to establish the seed fatty acid composition of each Adansonia species in order to evaluate and understand the relationships between the oil chemical compositions, the baobabs’ taxonomy and, the ecological and geographical origin of each seed lot. The seed oils have been analysed using gas chromatography (GC). The oils of all baobab species contain three major fatty acids: palmitic, oleic and linoleic acids. They also contain specific fatty acids such as cyclopropenic and cyclopropanic acids, which are characteristic of the Malvaceae family seed oils. It was possible to distinguish three sections through principal components analysis using the eleven fatty acids identified by GC. The Adansonia section contains high rates of oleic acid (± 35%), the Brevitubae section is rich in palmitic acid (± 42%) and the Longitubae section contains high levels of dihydrosterulic acid (± 5%). The oil fatty acid composition, however, does not enable a definitive characterization of profiles according to species. The fatty acid composition is not significantly influenced by the geographical, soil and climate conditions of the collection sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号