首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexually selected traits that are costly are predicted to be more condition dependent than nonsexually selected traits. Assuming resource limitation, increased allocation to a sexually selected trait may also come at a cost to other fitness components. To test these predictions, we varied adult food ration to manipulate condition in the colour dimorphic bug, Phymata americana. We compared the degree of condition dependence in a sexually selected trait expressed in males to a nonsexually selected trait expressed in males and females. We also evaluated the effects of condition on longevity of both sexes. We found that the expression of these colour pattern traits was strongly influenced by both diet and age. As expected, the strength of condition dependence was much more pronounced in the sexually selected, male-limited trait but the nonsexual trait also exhibited significant condition dependence in both sexes. The sexually selected male trait also exhibited a higher coefficient of phenotypic variation than the nonsexually selected trait in males and females. Diet had contrasting effects on male and female longevity; increased food availability had positive effects on female lifespan but these effects were not detected in males, suggesting that males allocated limited resources preferentially to sexually selected traits. These results are consistent with the expectation that optimal allocation to various fitness components differs between the sexes.  相似文献   

2.
Sex‐dependent selection can help maintain sexual dimorphism. When the magnitude of selection exerted on a heritable sex trait differs between the sexes, it may prevent each sex to reach its phenotypic optimum. As a consequence, the benefit of expressing a sex trait to a given value may differ between males and females favouring sex‐specific adaptations associated with different values of a sex trait. The level of metabolites regulated by genes that are under sex‐dependent selection may therefore covary with the degree of ornamentation differently in the two sexes. We investigated this prediction in the barn owl, a species in which females display on average larger black spots on the plumage than males, a heritable ornament. This melanin‐based colour trait is strongly selected in females and weakly counter‐selected in males indicating sex‐dependent selection. In nestling barn owls, we found that daily variation in baseline corticosterone levels, a key hormone that mediates life history trade‐offs, covaries with spot diameter displayed by their biological parents. When their mother displayed larger spots, nestlings had lower corticosterone levels in the morning and higher levels in the evening, whereas the opposite pattern was found with the size of paternal spots. Our study suggests a link between daily regulation of glucocorticoids and sex‐dependent selection exerted on sexually dimorphic melanin‐based ornaments.  相似文献   

3.
4.
5.
目的:观察雌激素受体(ERα和ERβ)在非繁殖期成年无蹼壁虎(Gekko swinhonis)心脏的表达并比较性别差异。方法:应用显示雌激素受体的免疫组织化学方法。结果:ERα和ERβ阳性反应均见于无蹼壁虎心肌细胞和成纤维细胞,且受体的表达无性别差异;ERα表达存在明显的心房(11.56±1.67)心室(6.68±1.88)差异(P〈0.01)。结论:雌激素可能是通过ERα主要作用于心房,通过ERβ调节整个心脏的机能;雌激素受体含量与性别无关,可能与生理条件下受体的活性及功能状态有关。  相似文献   

6.
大鼠心脏的雌激素受体免疫组织化学研究   总被引:5,自引:0,他引:5  
观察雌激素受体在雌性与雄性大鼠心脏中的表达.取大鼠心房与心室组织制作冰冻切片,应用抗雌激素受体单抗进行免疫组织化学(SP法)染色并进行图像分析.结果显示,雌性与雄性大鼠心脏都存在雌激素受体,且受体的表达无性别差异(P>0.05);心房与心室都存在雌激素受体阳性表达,其表达也无明显差异(P>0.05);阳性反应见于心肌细胞和成纤维细胞.结果表明,大鼠心脏存在雌激素受体,心房与心室都可能是雌激素的靶组织;心血管疾病的性别差异与雌性、雄性的受体含量无关,可能与生理条件下受体的活性及功能状态有关.  相似文献   

7.
Intracellular Ca2+ regulation is critical in the normal cardiac function and development of pathologic hearts. Phospholamban, an endogenous inhibitor of sarcoplasmic reticulum Ca2+ ATPase in the sarcoplasmic reticulum, plays an important role in Ca2+ cycling in heart. Recently, sarcolipin has been identified as having a similar function as phospholamban in skeletal muscle. Because phospholamban is differentially expressed in atrial and ventricular myocardia and its expression is often altered in diseased hearts, we investigated the cardiac chamber specificity of sarcolipin expression and its regulation during development and hypertrophic remodeling. Northern blot analysis revealed that the expression of mouse sarcolipin mRNA was most abundant in the atria and was undetectable in the ventricles, indicating an atrial chamber-specific expression pattern. Atrial chamber-specific expression of sarcolipin mRNA was increased during development. These findings were confirmed by in situ hybridization studies. In addition, sarcolipin expression was down-regulated in the atria of hypertrophic heart when induced by ventricular specific overexpression of the activated H-ras gene. In humans, sarcolipin mRNA was also expressed in the atria but not detected in the ventricles, although sarcolipin expression was most abundant in skeletal muscle. Taken together, sarcolipin is likely to be an atrial chamber-specific regulator of Ca2+ cycling in heart.  相似文献   

8.
9.
笼养东北虎雌雄行为差异的比较   总被引:8,自引:0,他引:8  
1998年4月-2001年3月在哈尔滨动物园,采用瞬时扫描取样法和全事件取样法对5只笼养东北虎(3雌2雄)的昼夜行为时间分配及活动规律进行了研究。结果表明:东北虎的睡眠、卧息、运动和其他行为在时间分配上两性存在一定差异,即雌性的睡眠和卧息时间比雄性多,雌性的运动和其他行为时间比雄性少;但摄食行为的时间分配相差不大。两性日活动规律的差异为雄性的睡眠高峰主要在夜晚,卧息较雌性少且相对集中,运动出现和结束的时间较雌性延迟约1h。对两性及不同个体行为时间分配的单因素方差分析发现,不同个体间仅运动存在显著差异(P<0.05);两性间睡眠、卧息、运动和其他行为均存在显著差异(P<0.05)。笼养东北虎两性行为的差异可能与其野外的行为习惯有关,而这些行为习惯又与其担当的性别角色有紧密联系。  相似文献   

10.
A brain aromatase gene was identified from the Nile tilapia Oreochromis niloticus. The cDNA sequence of this gene differed from that of the ovarian aromatase gene previously reported from this species. Tissue specific expression for both brain and ovarian aromatase genes was examined in the tissues of adult tilapia. Brain aromatase mRNA was expressed in the brain, kidney, eye, ovary, and testis, but not in the liver and spleen. Ovarian aromatase mRNA was expressed in the brain, spleen, ovary, and testis but not in the eye, kidney, and liver. Differential aromatase gene expression between the sexes was investigated in all-male (XY) and all-female (XX) groups of tilapia fry from fertilisation throughout the sexual differentiation period. Semi-quantitative RT-PCR analysis revealed that the initiation of expression of both aromatase genes lay between 3 and 4 dpf (days post fertilisation) in both sexes. The level of brain aromatase mRNA gradually increased throughout the period studied with little difference between the sexes. This contrasted with marked sexual dimorphism of ovarian aromatase mRNA expression. In females, the expression level was maintained or increased gradually throughout ontogeny, while the level in males was dramatically down-regulated between 15 and 27 dpf. Subsequently, the level of ovarian aromatase mRNA expression fluctuated slightly in both sexes, with the expression in females always being higher than in males. These findings clearly suggest that ovarian aromatase plays a decisive role in sexual differentiation in this species and that this is achieved by down-regulation of the expression of this gene in males. Mol. Reprod. Dev. 59: 359-370, 2001.  相似文献   

11.
The cardiac neuronal norepinephrine (NE) transporter (NET) in sympathetic neurons is responsible for uptake of released NE from the neuroeffector junction. The purpose of this study was to assess the chamber distribution of cardiac NET protein measured using [(3)H]nisoxetine binding in rat heart membranes and to correlate NE content to NET amount. In whole mounts of atria, NET was colocalized in nerve fibers with tyrosine hydroxylase (TH) immunoreactivity. NE content expressed as micrograms NE per gram tissue was lowest in the ventricles; however, NET binding was significantly higher in the left ventricle than the right ventricle and atria (P < 0.05), resulting in a significant negative correlation (r(2) = 0.922; P < 0.05) of NET to NE content. The neurotoxin 6-hydroxydopamine, an NET substrate, reduced NE content more in the ventricles than the atria, demonstrating functional significance of high ventricular NET binding. In summary, there is a ventricular predominance of NET binding that corresponds to a high NE reuptake capacity in the ventricles, yet negatively correlates to tissue NE content.  相似文献   

12.
Phenylethanolamine N-methyltransferase (PNMT) is a final enzyme in catecholamine synthesizing cascade that converts noradrenaline to adrenaline. Although most profuse in adrenal medulla, PNMT is expressed also in the heart, particularly in cardiac atria and ventricles. In atria, the PNMT mRNA is much more abundant compared to ventricles. In present study we aimed to find out whether there is a difference in modulation of the PNMT gene expression in cardiac atria and ventricles. We used three methodological approaches: cold as a model of mild stress, hypoxia as a model of cardiac ischemic injury, and transgenic rats (TGR) with incorporated mouse renin gene (mREN-2)27, to determine involvement of renin-angiotensin pathway in the PNMT gene expression. We have found that PNMT gene expression was modulated differently in cardiac atria and ventricles. In atria, PNMT mRNA levels were increased by hypoxia, while cold stress decreased PNMT mRNA levels. In ventricles, no significant changes were observed by cold or hypoxia. On the other hand, angiotensin II elevated PNMT gene expression in ventricles, but not in atria. These results suggest that PNMT gene expression is modulated differently in cardiac atria and ventricles and might result in different physiological consequences.  相似文献   

13.
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.  相似文献   

14.
Intergenomic conflict can affect the distribution of genes across eukaryotic genomes. Because the phenotypic optima of males and females often differ, the fitness consequences of newly arisen alleles might not be concordant between the sexes and can be sexually antagonistic--genetic variants favored in one sex are deleterious in the other. In this article, we demonstrate that previously unexplained patterns of sex-biased gene expression in Drosophila melanogaster might have evolved by sexual antagonism, and that the majority of sex-biased expression is due to adaptive changes in males, implying that males experience stronger selection than females.  相似文献   

15.
Nppa is a cardiac hormone which plays critical roles in regulating salt–water balance. Its expression is restricted to the atria of the healthy post‐natal heart. During heart development, spatio‐temporal expression of Nppa is dynamically changed within the heart and becomes restricted to the atria upon birth. In contrast to its atrial specific expression after birth, Nppa is re‐expressed in the adult ventricles in response to cardiac hypertrophy. To study cardiac chamber specification during development and pathological cardiac remodeling during heart disease, we generated a novel Nppa reporter mouse line by knocking‐in a tagBFP reporter cassette into 3′‐UTR of the Nppa gene without disrupting the endogenous gene. Our results demonstrated dynamic tagBFP expression in the developing heart, recapitulating the spatiotemporal expression pattern of endogenous Nppa. We also found that Nppa‐tagBFP is induced in the ventricle during pathological remodeling. Taken together, Nppa‐tagBFP reporter knock‐in mouse model described in this article will serve as a valuable tool to study cardiac chamber specification during development as well as pathological cardiac remodeling.  相似文献   

16.
17.
The effect of xenobiotics (phenobarbital and atrazine) on the expression of Drosophila melanogaster CYP genes encoding cytochromes P450, a gene family generally associated with detoxification, was analyzed by DNA microarray hybridization and verified by real-time RT-PCR in adults of both sexes. Only a small subset of the 86 CYP genes was significantly induced by the xenobiotics. Eleven CYP genes and three glutathione S-transferases (GST) genes were significantly induced by phenobarbital, seven CYP and one GST gene were induced by atrazine. Cyp6d5, Cyp6w1, Cyp12d1 and the ecdysone-inducible Cyp6a2 were induced by both chemicals. The constitutive expression of several of the inducible genes (Cyp6a2, Cyp6a8, Cyp6d5, Cyp12d1) was higher in males than in females, and the induced level similar in both sexes. Thus, the level of induction was consistently higher in females than in males. The female-specific and hormonally regulated yolk protein genes were significantly induced by phenobarbital in males and repressed by atrazine in females. Our results suggest that the numerous CYP genes of Drosophila respond selectively to xenobiotics, providing the fly with an adaptive response to chemically adverse environments. The xenobiotic inducibility of some CYP genes previously associated with insecticide resistance in laboratory-selected strains (Cyp6a2, Cyp6a8, Cyp12d1) suggests that deregulation of P450 gene expression may be a facile way to achieve resistance. Our study also suggests that xenobiotic-induced changes in P450 levels can affect insect fitness by interfering with hormonally regulated networks.  相似文献   

18.
Monoclonal antibodies (mAbs), electrophoresis, immunoblotting, and immunohistochemistry were used to determine the molecular properties of cardiac myosin heavy chain (MHC) isoforms and the regions of the developing chicken heart in which they were expressed. Adult atria expressed three electrophoretically distinct MHCs that reacted specifically with mAbs F18, F59, or S58. During embryonic Days 2-4, when the atrial and ventricular chambers are forming, MHCs that reacted with mAbs F18, F59, or S58 were expressed in both the atria and ventricles. The atria continued to express MHCs that reacted with mAbs F18, F59, or S58 at all stages of development and in the adult. In the ventricles, expression of the MHCs reacting with these mAbs was found to be developmentally regulated. By embryonic Day 16, MHC(s) reacting with mAb F18 had disappeared from the developing ventricles, whereas MHCs reacting with S58 and F59 continued to be expressed throughout the ventricles. As development continued, MHC(s) reacting with S58 in the ventricle became restricted to expression in only the ventricular conducting system. MHC(s) reacting with F59 were expressed in both the ventricular myocytes and the ventricular conducting system throughout development and in the adult. Thus, in contrast to the embryonic chicken heart where at least three MHC isoforms were expressed in both the atria and ventricles, we found in the adult chicken heart that-at a minimum-three MHC isoforms were expressed in the atria, two MHC isoforms were expressed in the ventricular conducting system, and one MHC isoform in the ventricular myocardium. MHC isoform expression in the developing avian heart appears to be more complex than previously recognized.  相似文献   

19.
Atrial natriuretic factor (ANF) is a 28-amino acid peptide hormone with potent natriuretic, diuretic and vasodilator properties. Isolation and DNA sequence analysis of rat and human cDNA clones revealed that ANF is synthesized from a 126-amino acid precursor which is highly conserved in both species. Southern blot analysis indicated that the ANF gene is present in a single copy per haploid genome. Both human and rat ANF genes were isolated and showed a similar structural organization which consisted of three exons and two introns. The ANF gene was localized to the short arm of human chromosome 1 and mouse chromosome 4. While atria are the major site of expression of the ANF gene in adult heart, other tissues like ventricles, lung, anterior pituitary, hypothalamus and adrenal synthesize ANF albeit to a much lower extent. In ventricles, ANF mRNA levels are 150 times lower than in atria. However, in cardiac hypertrophy or in congestive heart failure, ventricular ANF mRNA and peptide levels are dramatically (100-fold) increased both in animal models and in humans. This suggests that ventricles are a major site of ANF gene expression in certain pathophysiological conditions and that ANF is not an exclusively atrial peptide as was originally thought.  相似文献   

20.
A monoclonal antibody (anterior latissimus dorsi 58 [ALD58]; antimyosin heavy chain, MHC) directed against myosin from slow tonic muscle was found to react specifically with the striated muscle cells of the conductive system in the adult chicken heart. This monoclonal antibody was used to study the expression of myosin in the conductive system of the adult and developing heart. Using immunofluorescence microscopy with ALD58, muscle cells of the conductive system were demonstrated in both the atria and ventricles of the adult heart as previously shown by Sartore et al. (Sartore, S., S. Pierobon-Bormioli, and S. Schiafinno, 1978, Nature (Lond.), 274: 82-83). Radioactive myosin from adult atria and ventricles was precipitated with ALD58 and subjected to limited proteolysis and subsequent peptide mapping. Peptide maps of ALD58 reactive myosin from atria and ventricles were very similar, if not identical, but differed from peptide maps of ordinary atrial and ventricular myosin. The same antibody was used to study cardiac myogenesis in the chick embryo. When ALD58 was reacted with myosin isolated from atria and ventricles at selected stages of development in radioimmunoassays, reactivity was not observed until the last week of embryonic life (greater than 15 d of egg incubation). Thereafter concomitant and progressively increased reactivity was observed in atrial and ventricular preparations. Also, no ALD58 positive cells were observed in immunofluorescence studies of embryonic hearts until 17 d of egg incubation. Primary cell cultures of embryonic hearts also proved to be negative for this antibody. This study demonstrates that an epitope recognized by ALD58 associated with an antimyosin heavy chain of striated muscle cells of the adult heart conductive system is absent or present in only small amounts in the early embryonic heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号