首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The connection between metabolic and sea water adaptation of the rainbow trout was investigated. The rainbow trout were kept in fresh water and diluted sea water of 8 and 20 0/00 S at 16 degrees C and fed on three different diets for 51 days. Hyperosmotic salinity (20 0/00) tends to inhibit growth in rainbow trout by reducing the food conversion efficiency. A higher protein concentration in the diet can partly compensate for this effect. The liver IDH, G6PDH and 6PGDH activities of the rainbow trout are influenced only by food quality, whereas the liver G1DH, AspT and A1T activities, like the muscle A1T, are also affected by salinity. The salinity had no significant effect on the activities of the kidney enzymes we investigated (Na/K-ATPase, G1DH, A1T, AspT) or of the muscle AspT in these experiments.  相似文献   

2.
We performed an analysis of allozyme variation in brown trout from Vorobiev creek. Seventeen allozyme loci encoding glycerol-3-phosphate dehydrogenase (G3PDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and esterase D (EST-D) were studied. We found statistically significant differences in allele frequencies for the AAT-1,2*, G3PDH-2,3*, LDH-5*, and MDH-2* loci between brown trout samples collected in 1981–1982 and/or 1992–1995. We suggest that temporal changes of allele frequencies in brown trout from Vorobiev Creek are associated with gene drift.  相似文献   

3.
We have studied the effects of feeding an amino-acid-based diet (ABD) at different frequencies upon growth and several NADPH-production systems in the rainbow trout (Oncorhynchus mykiss). The kinetic behavior of glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), malic enzyme (ME) and NADP-linked isocitrate dehydrogenase (NADP-IDH) was followed in the liver, kidney and adipose tissue.The kinetic parameters of NADP-IDH alone remained unaltered by either ABD or changes in feeding frequency. Maximum-velocity and catalytic-efficiency values of hepatic G6PDH and ME increased significantly when fed four times a day compared to twice a day with both the control diet and ABD, although these parameters for ME were significantly lower with ABD than with the control diet at both frequencies. In the kidney the activity and catalytic efficiency of G6PDH and 6PGDH increased significantly with high-frequency feeding on ABD. The activities of these enzymes in adipose tissue were much lower than in hepatic tissue. In the liver, maximum velocity and the catalytic efficiency of G6PDH, 6PGDH and ME increased significantly with the control diet at high-frequency feeding whereas they decreased significantly with ABD, especially with high-frequency feeding. Neither the Michaelis constant nor the activity ratios varied.Both feeding frequency and free amino acid altered the activity of the most important cytosolic NADPH-production systems. The varying response to nutritional stimuli of NADP-linked enzymes in fish tissues shows that they have independent physiological and metabolic roles and that their regulatory mechanisms respond to changes in nutritional and metabolic factors.  相似文献   

4.
The activity of some enzymes involved in energy and carbohydrate metabolism was studied in Atlantic salmon embryos at the eyed egg stage and in salmon fingerlings (0+) from two trophic–ecological groups: the Varzuga River bed and two tributaries, the Pyatka and Sobachii rivers (Kola Peninsula). It has been demonstrated that heterogeneity of embryos was most evident in the case of cytochrome c oxidase (CO), malate dehydrogenase (MDH), glycerol-1-phosphate dehydrogenase (G1PDH), and glucose-6-phosphate dehydrogenase (G6PDH), while the lowest level of heterogeneity was observed for lactate dehydrogenase (LDH) and aldolase. A positive correlation was revealed between the activities of CO, LDH, MDH, and G1PDH. It was noted that G6PDH showed a negative correlation with almost all enzymes under study. It was found that salmon juveniles inhabiting the tributaries were characterized by high LDH, aldolase, and G1PDH activity and lower activity of G6PDH compared to the juveniles inhabiting the main river bed. Notably, the differences in the activity of the enzymes involved in aerobic metabolism between the two groups of fingerlings under analysis were observed only in the autumn.  相似文献   

5.
Little is known about the way in which carnivorous fish such as salmonids mobilise and metabolise dietary carbohydrates, which are essential to lipid metabolism. Thus we have studied changes caused by the absence of dietary carbohydrates to the kinetics and molecular behaviour of the four cellular NADPH-production systems [glucose 6-phosphate dehydrogenase (G6PDH); 6-phosphogluconate dehydrogenase (6PGDH); malic enzyme (ME); and isocitrate dehydrogenase NADP-dependent (NADP-IDH)] in the liver and adipose tissue of rainbow trout (Oncorhynchus mykiss). We used spectrophotometry to study enzyme kinetics and nucleic acid concentrations, and immunoblot analysis to determine specific protein concentrations. The absence of carbohydrate reduced specific enzyme activity, maximum rate and catalytic efficiency by almost 65% in G6PDH and 6PGDH, by more than 50% in ME, and by almost 25% in NADP-IDH but caused no significant changes in the K(m) values or activity ratios in any of these hepatic enzymes. Molecular analysis clearly showed that this kinetic behaviour reflected concomitant changes in intracellular enzyme concentrations, produced by protein-induction/repression processes rather than changes in the activity of pre-existing enzymes. We conclude that the absence of carbohydrates significantly reduces intracellular concentrations of G6PDH, ME and NADP-IDH in trout liver in percentages similar to those recorded for enzyme activity. We found no such variations in the concentrations of any of these enzymes in adipose tissue and no change in the levels of their activity, suggesting that the liver and adipose tissues are subject to different regulation systems with regard to carbohydrates and play distinct roles in lipid metabolism.  相似文献   

6.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个关键酶。在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位。结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生。讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料。  相似文献   

7.
1. The connection between feeding regime (food deprivation and restricted diet) and thermal acclimation (1-2, 6, 11 and 16 degrees C) was studied in rainbow trout held in diluted seawater (20% S). 2. At 1 degree C, food deprivation effects on all parameters are slight, and on RNA and certain enzymes they are masked by thermal acclimation effects. 3. At a salinity of 20% rainbow trout on a restricted diet and held at 11 degrees C have the highest growth rate. 4. Owing to increasing RNA levels, the RNA/DNA quotient is significantly higher than normal in rainbow trout held at 1 degree C although the fishes do not grow at this temperature. 5. Temperature and feeding both affect the enzymes we studied (liver: G1DH, AspT, arginase, G6PDH, and 6PGDH; kidney: G1DH, AspT, arginase, and Na/K-ATPase; white muscle: AspT and A1T; gill: Na/K-ATPase) differently. Interactions between these two factors also occur in some cases.  相似文献   

8.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个酶.在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位.结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生.讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料.  相似文献   

9.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

10.
The objective of the study described here was to analyze in rainbow trout (Oncorhynchus mykiss) the effects of low protein intake on peripheral glucose phosphorylation capacities and gluconeogenic enzymes in kidney and intestine. Fish were food-deprived for 14 days or kept under a low and a high protein intake regime using a pair feeding protocol in order to maintain constant carbohydrate and lipid intakes. We analyzed the effect of protein restriction on (i) hepatic, renal and intestinal fructose-1.6-bisphophatase (FBPase) and glucose-6-phosphatase (G6Pase) enzymes at the molecular and enzymatic levels and (ii) glucose phosphorylation activities (hexokinases) in the liver, peri-visceral adipose tissue, red muscle and white muscle. Irrespective of the nutritional status, we observed the same levels of hexokinase activities in all the tissues studied. Renal G6Pase and FBPase gene expression and activities were not modified among the groups. In contrast, there was increased intestinal FBPase gene expression in fish under a low protein intake and higher G6Pase activities in both groups of fed fish. This result differs from what is observed in rats and suggest a role of intestine in the regulation of postprandial gluconeogenesis in fed trout. In conclusion, our data did not demonstrate any specific effect of low dietary protein intake to either gluconeogenic capacities or glucose phosphorylation capacities in rainbow trout.  相似文献   

11.
We assessed the daily patterns of parameters involved in energy metabolism in liver, white muscle, and gills of rainbow trout. Where daily rhythms were found, we analyzed the potential influence of feeding. Immature rainbow trout were randomly distributed in 3 groups: fish fed for 7 days, fish fasted for 7 days, and fish fasted for 7 days and refed for 4 days. On sampling day, fish of fed and refed groups were fed at 11.00 h, and all fish were sampled from each treatment group using the following time schedule: 14.00, 18.00, 21.00, 00.00, 04.00, 07.00, 10.00 and 14.00 h. The results obtained from metabolic parameters can be grouped into four different categories, such as i) those displaying no daily changes in any group assessed in liver (acetoacetate and lactate levels), white muscle (protein levels, and low Km (glucose) hexokinase (HK) and HK-IV activities) and gills (protein levels), ii) those displaying no 24 h changes in fed fish but in refed or fasted fish in liver (glucose, glycogen, amino acid and protein levels, and HK-IV activity), white muscle (glycogen and amino acid levels) and gills (glucose levels), iii) those displaying 24 h changes that were apparently dependent on feeding since they disappear in fasted fish in liver (Low Km (glucose) HK, lactate dehydrogenase (LDH-O), glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase) , alpha-glycerophosphate dehydrogenase (G3PDH), glutamate dehydrogenase (GDH) and aspartate aminotransferase (Asp-AT) activities), white muscle (glucose levels, and pyruvate kinase (PK), LDH-O, G3PDH and Asp-AT activities) and gills (glycogen and lactate levels, and Low Km (glucose) HK, HK-IV, LDH-O and Asp-AT activities), and iv) those parameters displaying 24 h changes apparently not dependent on feeding in liver (lactate levels and PK activity) and gills (amino acid levels, and PK and GDH activities). In general, most 24 h changes observed were dependent on feeding and can be also related to daily changes in activity.  相似文献   

12.
13.
Abstract: Glycerol phosphate dehydrogenase (GPDH), glucose-6-phosphate dehydrogenase (G6PDH), and lactate dehydrogenase (LDH) activities were determined in Oligodendrocytes, neurons, and astrocytes isolated from the brains of developing rats. The activity of each enzyme was significantly lower in both neurons and astrocytes than in Oligodendrocytes. The GPDH activity in Oligodendrocytes increased more than 4-fold during development, and at 120 days cells of this type had 1.4-fold the specific activity of forebrain homogenates. The G6PDH activities in Oligodendrocytes from 10-day-old rats were 1.4-fold the activities in the forebrain homogenates. The activities of this enzyme in Oligodendrocytes were progressively lower at later ages, such that at 120 days the cells had 0.8 times the specific activities of homogenates. The Oligodendrocytes had 0.6 times the homogenate activities of LDH at 10 days, and this ratio had decreased to 0.2 by 120 days. These enzymes were also measured in myelin isolated from 20-, 60-, and 120-day-old rats. By 120 days the specific activities of G6PDH and LDH in myelin were <8% of the respective activities in homogenates. The GPDH activity in myelin was, however, at least 20% the specific activity in the homogenates, even in the oldest animals. It is proposed that LDH could be used as a marker for oligodendroglial cytoplasm in subfractions of myelin and in myelin-related membrane vesicles.  相似文献   

14.
Scarce bibliographical data exists on the enzymes in Lepidosiren paradoxa and analysis of several enzymes was considered worthy of investigation. Distribution of ADH, ALP, FBALD, GAPDH, G3PDH, G6PDH, GPI, LDH, MDH, and PGM was identified in ten tissues (retina, heart, muscle, liver, kidney, lung, gut, gills, brain, and ovary) of the South American lungfish and compared with patterns previously described in other vertebrates. Compared with earlier results differences in the number of loci expressed were observed for ADH, G3PDH, GPI, and MDH. The number of loci expressed and/or in tissue specificity of several enzymes (ADH, FBALD, GAPDH, G3PDH, G6PDH and PGM) were found to be similar to those of other vertebrates. Differences were detected in ALP due to the absence of an intestinal-specific form typical of fish, amphibians, reptiles and birds; further differences were observed in GPI and MDH due to their tissue expression. The differences in LDH involve the LDH-A4 isozyme which was most common in tissues. Overall, comparison with other vertebrates reveals that in L. paradoxa the tissue-restricted expressions of some enzymes are similar, while others have retained an ancestral pattern and exhibit a more widespread tissue expression of genes.  相似文献   

15.
We investigated the effect of copper on liver key enzymes of the anaerobic glucose metabolism (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK; lactate dehydrogenase, LDH) as well as of the pentose pathway (glycose-6-phosphate dehydrogenase, G6PDH) from the fish Prochilodus lineatus. The fish were acclimated at either 20 degrees C or 30 degrees C at pH 7.0, transferred to water at pH 4.5 or 8.0, and exposed to 96 h-CL(50) copper concentrations. Copper accumulation in liver was higher in fish acclimated at 20 degrees C and maintained in water pH 8.0. Three-way analysis of variance revealed a significant effect of temperature on all enzymes, a significant effect of pH on all enzymes except for PK, and a significant effect of copper on only PFK, and LDH in pH 4.5 at 20 degrees C and, at 30 degrees C, on PFK and PK at pH 4.5 and 8.0, HK at pH 4.5 and G6PDH at pH 8.0. There were significant interactions between treatments for many enzymes. These changes suggest that the activity of enzymes in question is modified by a change in ambient water. At least at 30 degrees C, the overall reduction in the glycolytic enzyme activities of copper-exposed fish seems to reduce energy availability via glucose metabolism, thereby contributing to enhance copper toxic effects.  相似文献   

16.
17.
18.
OESTROGEN EFFECTS ON BRAIN AND PITUITARY ENZYME ACTIVITIES   总被引:3,自引:3,他引:0  
Abstract— Ovariectomized female rats were treated daily with oestradiol-17β benzoate for intervals up to one week and enzyme activities were measured in the pituitary and various brain regions. Brain regions were selected for study on the basis of their previously demonstrated content of putative oestradiol receptor sites. (1) Pituitary showed oestrogen-dependent increases in glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and lactic dehydrogenase (LDH), and no change in NADP+-dependent isocitric dehydrogenase (ICDH), NADP+-dependent malic dehydrogenase (MDH) or hexokinase (HK). MDH and ICDH were elevated in whole hypothalamus. Enzyme activities did not change significantly in whole amygdala, cerebral cortex, or hippocampus. (2) Sub-regions of the preoptic area, hypothalamus and amygdala were dissected to obtain more highly concentrated populations of cells containing putative oestrogen receptor sites. In the basomedial sub-region of hypothalamus, activities of MDH, ICDH and G6PDH were elevated by oestrogen treatment. In the corticomedial sub-region of amygdala, MDH and ICDH were elevated by oestrogen treatment. No change was observed in any of the six enzymes in medial preoptic area. (3) Increases in enzyme activities were related to the total in vivo dose of oestradiol benzoate given. (4) Hypophysectomy or adrenalectomy did not prevent the enzymatic responses to oestrogen. (S) Oestrogen added directly to the enzyme incubation medium did not change enzyme activities. (6) Weight loss in ovariectomized rats due to reduced food intake did not increase enzyme activities. (7) In the pituitary, good correlation was obtained between the known receptor binding properties of various oestrogenic and non-oestrogenic steroids and the elevation in G6PDH activity. The results indicate that oestradiol acts directly to cause changes in activities of some brain and pituitary enzymes. The possibility is discussed that these changes may result from oestrogen interaction with putative receptor sites found in pituitary and certain brain regions.  相似文献   

19.
The catalytic activities of lysozyme, horseradish peroxidase (HP), catalase, glucose-6-phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH) were studied in aqueous solutions and after isolation of the enzymes from mixed reversed micelles of Aerosol OT and Triton X-45 by organic solvents (acetone, ethanol, isopropanol), by acetone-water mixtures, as well as by aqueous solutions containing urea, glycerol, polyethylene glycol 6000 and ammonium sulphate. The isolation conditions were found for catalase with retaining all the activity and for HP and lysozyme with retaining 72 and 84% of the catalytic activity, respectively. The G6PDH isolation from micelles by aqueous solutions of urea (6%) and glycerol (10%) resulted in retaining only 43% of the enzyme activity and led to almost complete inactivation of LDH. Stability of the enzymes after their entrapment in micelles and isolation from those is compared with thermostability of the same enzymes in aqueous solutions.  相似文献   

20.
The current research aims to determine alterations in gene expression and enzymatic activity of fish antioxidant metabolism in response to pesticide administration. To this end, three different deltamethrin concentrations (0.25, 1, 2.5 μg/L) were administrated to rainbow trout (Oncorhynchus mykiss) at different time intervals (6, 12, 24, 48 and 72 h) in order to observe the influences of the pesticide on the activity of glutathione reductase, glucose 6-phosphate dehydrogenase, 6-ghosphogluconate dehydrogenase, and the expression of Hsp70 gene. We observed that the activities of the enzymes decreased with increasing deltamethrin concentrations and exposure time. The pesticide had more inhibitory effects on gill enzymes than those of muscle, liver and kidney. In addition, we detected that deltamethrin increased the expression of the stress-related protein Hsp70 with significant fold-chance values. The efficiency rate was 96.4% which is equal to 1.96 calculated via conversion formula used to calculate fold-chance value. We conclude that deltamethrin causes oxidative stress in fish both at protein and mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号