首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure of red blood cells (RBC) to the K+-ionophore valinomycin (val), causes loss of KCl and water, resulting in cell dehydration, manifested by increased cell density. While almost all normal val-treated RBC dehydrate, in sickle cell anemia (SCA) a portion of the RBC fail to dehydrate and maintain a light density, indicating the existence of val-resistant (val-res) RBC. In thalassemia and sickle cell disease (SCD), although the primary lesion is in the globin genes, damage to the RBC is partly mediated by oxidative stress. We previously showed that such RBC are under oxidative stress, having more reactive oxygen species (ROS) and less reduced glutathione than normal RBC. We now report a relationship between the phenomenon of val-res and the RBC oxidative status: Treatment with oxidants that increase ROS, also increased the frequency of val-res cells. Val-res cells had higher oxidative status than other RBC in the sample. Similar to SCA, thalassemic blood has more val-res cells than does normal blood. Val-res cells in thalassemic and sickle blood showed a higher oxidative status than normal val-res cells. Thus, oxidative stress might be involved in generation of val-res cells. Further studies are required to elucidate the origin and significance of these cells.  相似文献   

2.
Taking advantage of the effects on DNA secondary structure of two DNA-intercalators,ethidium bromide and chloroquine,we used each of them to treat nuclei from both mature erythrocytes and reticulocytes of chicken,as an alternative approach to study the relationships between DNA secondary structure,nuclear proteins and chromatin structure.We presented results of differential extraction of nuclear proteins from nuclei with DNA-intercalators,as well as preliminary characterization of these proteins.A 45kd protein is the major component in fractions extracted by both intercalators from nuclei from either mature erythrocytes or reticulocytes and seems to be a DNA-binding protein.Furthermore,from current concepts of functional aspects of DNA conformation and structural heterogeneity in chromatin and nuclear proteins,we have discussed both the significance of our results as well as technical aspects of this approach.  相似文献   

3.
The pathogenesis of malaria is largely due to stiffening of the infected red blood cells (RBCs). Contemporary understanding ascribes the loss of RBC deformability to a 10-fold increase in membrane stiffness caused by extra cross-linking in the spectrin network. Local measurements by micropipette aspiration, however, have reported only an increase of ~3-fold in the shear modulus. We believe the discrepancy stems from the rigid parasite particles inside infected cells, and have carried out numerical simulations to demonstrate this mechanism. The cell membrane is represented by a set of discrete particles connected by linearly elastic springs. The cytosol is modeled as a homogeneous Newtonian fluid, and discretized by particles as in standard smoothed particle hydrodynamics. The malaria parasite is modeled as an aggregate of particles constrained to rigid-body motion. We simulate RBC stretching tests by optical tweezers in three dimensions. The results demonstrate that the presence of a sizeable parasite greatly reduces the ability of RBCs to deform under stretching. With the solid inclusion, the observed loss of deformability can be predicted quantitatively using the local membrane elasticity measured by micropipettes.  相似文献   

4.
Summary The influence of natural -interferon (-IFN) therapy (3×106 units i.m. daily) on blood lymphoid cells was studied in 20 patients with gynecological neoplasias (7 patients with condylomata accuminata and 13 patients with ovarian carcinoma). There was a statistically significant increase in the intracellular levels of 2'–5'oligoadenylate synthese 1 day after the first injection of IFN and with few exceptions this activity remained increased during 3 months of treatment. In most of the patients, the capacity of blood lymphoid cells to produce IgA, IgG, and IgM following stimulation with pokeweed mitogen was decreased 1 day after the first injection of IFN and with few exceptions it remained low during 6 months of IFN therapy. In most patients there was a decrease in the capacity of lymphoid cells to act as stimulator or responder cells in a mixed lymphocyte culture during IFN therapy. The -IFN therapy had no major influence on the response of lymphoid cells to mitogens. We conclude, that neither this nor our previous studies on the influence of IFN therapy on immunological functions have given support to the hypothesis that the antitumor action of IFN is mediated by the immune system.  相似文献   

5.
Primaquine, a prooxidant antimalarial drug, incubated with human red blood cells (RBC) induced marked superoxide generation in the cells as detected by exogenous cytochrome c reduction. In the presence of primaquine, β-thalassemic RBC produced significantly more superoxide than normal RBC, thus reflecting the vulnerability of β-thalassemic cells to oxidative stress.  相似文献   

6.
Red cabbage belongs to cruciferous vegetables recognized as a rich source of anthocyanins. Anthocyanins have a wide range of therapeutic advantages without adverse effects, including cardiovascular protective properties. For development of cardiovascular diseases, platelet activation is crucial; therefore compounds which inhibit platelet activation are sought after. The anti-platelet activity of anthocyanins has only been described and is still unclear. In our study, the extract of anthocyanins, obtained from fresh leaves of red cabbage, was used in vitro to examine their antioxidative effects on platelets under oxidative stress conditions which are responsible for hyperactivity of these cells. The antiplatelet and antioxidative activities were determined by platelet aggregation and specific markers of the arachidonate cascade with O2−· generation, and oxidative changes (carbonyl groups and 3-nitrotyrosine). Extracts (5–15 μM) protected platelet proteins and lipids against oxidative damage, and diminished platelet activation. Anthocyanins from red cabbage provided beneficial anti-platelet effects and might help prevent cardiovascular diseases.  相似文献   

7.
Raman confocal microscopy, combined with an optical stretcher, is used to study the spatial distribution and the oxidation state of hemoglobin in erythrocytes under stretching condition. In particular, a near infrared laser (λ = 1064 nm) is used to generate multiple time-sharing Optical Tweezers to trap and stretch a single erythrocyte, while a second laser (λ = 532 nm) acts as Raman probe. Our study demonstrates that stretching induces hemoglobin transition to the deoxygenated state. Moreover, by using Principal Component Analysis we prove the reversibility of the oxy?deoxy hemoglobin transition after application of the optically induced mechanical stress.  相似文献   

8.
It has been found that β-endorphin modulation of lymphocyte proliferative activity in male donors is mainly observed at a relatively young age (in groups aged 20–29 and 30–39 years), it gradually becomes lower with age, and disappears in donors at aged 50–60 years. At the same time, women have a prolonged modulating effect of peptide on proliferation. In women aged 50–59 years, the peptide has a marked promotional effect on spontaneous proliferation at concentrations of 10?7, 10?8, and 10?10 M induced by a suboptimal concentration of phytohemagglutinin (PHA) at 10?10 M, while in women aged 30–39 years, β-endorphin suppresses PHA-induced proliferative response. In men aged 20–29 years, β-endorphin stimulates the uptake capacity of neutrophils, whereas in those aged 50–59 years, this capacity is suppressed by β-endorphin. In female donors from any age groups, β-endorphin was not found to influence the activity of neurophils.  相似文献   

9.

Background

Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood.

Methods and Findings

Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8+ T cells and IFN-γ drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4+ T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-α did not influence the early increase of total parasite biomass and IRBC accumulation in different organs.

Conclusions

CD8+ T cells and IFN-γ are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues.  相似文献   

10.
Introduction: Red blood cells (RBC) are the most abundant host cells in the human body. Mature erythrocytes are devoid of nuclei and organelles and have always been regarded as circulating ‘bags of hemoglobin’. The advent of proteomics has challenged this assumption, revealing unanticipated complexity and novel roles for RBCs not just in gas transport, but also in systemic metabolic homeostasis in health and disease.

Areas covered: In this review we will summarize the main advancements in the field of discovery mode and redox/quantitative proteomics with respect to RBC biology. We thus focus on translational/clinical applications, such as transfusion medicine, hematology (e.g. hemoglobinopathies) and personalized medicine. Synergy of omics technologies – especially proteomics and metabolomics – are highlighted as a hallmark of clinical metabolomics applications for the foreseeable future.

Expert commentary: The introduction of advanced proteomics technologies, especially quantitative and redox proteomics, and the integration of proteomics data with omics information gathered through orthogonal technologies (especially metabolomics) promise to revolutionize many biomedical areas, from hematology and transfusion medicine to personalized medicine and clinical biochemistry.  相似文献   


11.
12.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

13.
Pathways of K+ movement across the erythrocyte membrane of frog Rana temporaria were studied using 86Rb as a tracer. The K+ influx was significantly blocked by 0.1 mmol·l-1 ouabain (by 30%) and 1 mmol·l-1 furosemide (by 56%) in the red cells incubated in saline at physiological K+ concentration (2.7 mmol·l-1). Ouabain and furosemide had an additive effect on K+ transport in frog red cells. The ouabain-sensitive and furosemide-sensitive components of K+ influx saturated as f(K+)e with apparent K m values for external K e + concentration of 0.96±0.11 and 4.6±0.5 mmol·l-1 and V max of 0.89±0.04 and 2.8±0.4 mmol·l cells-1·h-1, respectively. The residual ouabain-furosemide-resistant component was also a saturable function of K e + medium concentration. Total K+ influx was significantly reduced when frog erythrocytes were incubated in NO - 3 medium. Furosemide did not affect K+ transport in frog red cells in NO 3 - media. At the same K e + concentration the ouabain-furosemide-insensitive K+ influx in Cl- medium was significantly greater than that in NO - 3 medium. We found no inhibitory effect of 1 mmol·l-1 furosemide on Na+ influx in frog red cells in Cl- medium. K+ loss from the frog erythrocytes in a K+-free medium was significantly reduced (mean 58%) after replacement of Cl- with NO - 3 . Furosemide (0.5 mmol·l-1) did not produce any significant reduction in the K+ loss in both media. The Cl--dependent component of K+ loss from frog red cells was 5.7±1.2 mmol·l-1·h-1. These results indicate that about two-thirds of the total K+ influx in frog erythrocytes is mediated by a K–Cl cotransport which is only partially blocked by furosemide.Abbreviations DMSO dimethyl sulphoxide - K e + external concentration of K+ - K m apparent Michaelis constant for external - K+ K e + at V max/2 - RBC red blood cell(s) - V max maximal velocity of the unidirectional K+ influx - TRIS tris(hydroxymethyl)aminomethane  相似文献   

14.
Whole blood from rainbow trout and carp was subjected to hyperosmotic shock and subsequent beta-adrenergic stimulation (isoprenaline) at different oxygen tension ( PO(2)) and carbon dioxide tension ( PCO(2)) levels with the aim to evaluate changes in red blood cell (RBC) volume, pH and ion concentrations and their ultimate effect on blood O(2) transport characteristics. Hyperosmolality (addition of NaCl) induced RBC shrinkage, which was followed by a regulatory volume increase (RVI) that was larger at low than at high PO(2)and more complete in carp than in trout. Carp RBC showed practically full volume recovery within 140 min at low PO(2)and partial recovery at high PO(2), whereas RVI was partial under all PO(2)and PCO(2)conditions in trout. The RVI increased intracellular [Na(+)], water content, and, in carp, also pH (pHi), suggesting activation of Na(+)/H(+) exchange. In trout RBCs, activation of RVI was rapid but succeeded by deactivation. In carp RBCs, activation of Na(+) influx was slower but it continued, allowing full volume recovery. Shrinkage of the RBCs was associated with only minor decreases in blood oxygen saturation and oxygen affinity in both species. Thus, the oxygen affinity decrease expected on the basis of the increased concentration of intracellular haemoglobin and organic phosphates was small, and it appeared to some extent countered during RVI by an oxygen affinity increase via increased pHi. Addition of isoprenaline increased RBC volume and pHi and increased Hb oxygen saturation. The beta-adrenergic response was stronger at low compared to high PO(2) and at high compared to low PCO(2). The PO(2) dependency was largest in carp, whereas the PCO(2) (pH) dependency was more expressed in trout. The adrenergic response of trout RBCs was similar under isoosmotic and hyperosmotic conditions. In carp RBCs, the response was absent at high PO(2) under isoosmotic conditions, but interestingly it could be induced under hyperosmotic conditions. The data suggest that the RBC shrinkage occurring in fish moving from freshwater to seawater has minimal impact on blood O(2) binding properties.  相似文献   

15.
One of the most intriguing areas of research in erythrocyte physiology is the interaction of hemoglobin with nitric oxide (NO). These two molecules independently fulfill diverse and complex physiological roles, while together they subtly modulate microvascular perfusion in response to second-by-second changes in local metabolic demand, contributing to hypoxic vasodilation. It is through an appreciation of the temporal and structural constraints of the microcirculation that the principal requirements of the physiological interplay between NO and hemoglobin are revealed, elucidating the role of the erythrocyte in hypoxic vasodilation. Among the candidate molecular mechanisms, only S-nitrosohemoglobin (SNO-hemoglobin) directly fulfills the physiological requirements. Thus, NO is transported by red blood cells to microvascular sites of action in protected form as an S-nitrosothiol on the highly conserved hemoglobin beta-93 Cys residue, invariant in birds and mammals. SNO-hemoglobin dispenses NO bioactivity to microvascular cells on the release of oxygen, physiologically coupling hemoglobin deoxygenation to vasodilation. SNO-hemoglobin is the archetype for the role of S-nitrosylation in a newly identified class of biological signals, and disturbances in SNO-hemoglobin activity are associated with the pathogenesis of several important vascular diseases.  相似文献   

16.
Adenosine is present in the micromolar range in human plasma. In this study, metabolism of adenosine, which was maintained between 0.62 +/- 0.03 and 2.92 +/- 0.43 microM by means of a continuous infusion using a Harvard infusion pump, was investigated in human red blood cells. It was found that lactate production increases linearly as the adenosine concentration was raised. Cells infused with an average adenosine concentration of 2 microM produced lactate comparable to that produced by 5 mM glucose. The extent to which ATP concentration is maintained by adenosine also depends on its concentration. After a 4 h infusion with an average adenosine concentration of 0.7 microM, ATP content amounts to 75% of the glucose control. Raising the adenosine infusion concentration to 1.5 microM results in a full maintenance of ATP levels and at concentrations higher than 1.5 microM, adenosine produces a net synthesis of ATP. A net synthesis of ATP also occurs with adenosine concentration below 1.5 microM, if supplemented with glucose. In contrast, inosine infusion provides only a partial support of ATP and fails to produce a net synthesis of ATP in the presence of glucose. In addition, the presence of purine nucleoside and glucose together influence the metabolism of each other, depending on inorganic phosphate content (Pi). At a Pi concentration of 1 mM, the glucose consumption rate is reduced by approx. 25% by purine nucleoside infusion and vice versa. In sharp contrast, glucose consumption at 16 mM Pi is potentiated by adenosine. These findings suggest that plasma adenosine contributes significantly to human red cell energetics, even though it is present at a concentration several orders of magnitude lower than glucose.  相似文献   

17.
Saline washed red blood cells of the toadfish convert [1-14C] arachidonic acid to products that cochromatograph with prostaglandin E2 and prostaglandin F. This synthesis is inhibited by indomethacin (10 μg/ml). Conversion of arachidonic acid to prostaglandin E2 was confirmed by mass spectrometry. When saline washed toadfish red blood cells were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15,-3H]-arachidonic acid, comparison of the isotope ratios of the radioactive products indicated that prostaglandin F was produced by reduction of prostaglandin E2. The capacity of toadfish red blood cells to reduce prostaglandin E2 to prostaglandin F was confirmed by incubation of the cells with [1-14C] prostaglandin E2.  相似文献   

18.
19.
The generation of red blood cells(RBCs)from stem cells provides a solution for deficiencies in blood transfusion.Currently,primary hematopoietic stem cells,embryonic stem cells and induced pluripotent stem cells have shown the potential to produce fully mature RBCs.Here,we discuss the advantages,induction protocols,progress and possible clinical applications of stem cells in RBC production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号