首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrolysin A and jararhagin are class P-III snake venom metalloproteinases (SVMPs) with three distinct domains: a metalloproteinase, a disintegrin-like and a cysteine-rich. The metalloproteinase and the disintegrin-like domains of atrolysin A and jararhagin contain peptide sequences that interact with alpha2beta1 integrin and inhibit the platelet responses to collagen. Recently, the recombinant cysteine-rich domain of atrolysin A was shown to have similar effects, but the sequence(s) responsible for this is unknown. In this report, we demonstrate two complete peptide sequences from the homologous cysteine-rich domains of atrolysin A and jararhagin that inhibit both platelet aggregation by collagen and adhesion of alpha2-expressing K562 cells to this protein. In addition, the peptide effects on platelets do not seem to involve an inhibition of GPVI. These results identify, for the first time, sites in the cysteine-rich domain of SVMPs that inhibit cell responses to collagen and reveal the complexity of the potential biological effects of these enzymes with multifunctional domains.  相似文献   

2.
The integrins alpha(2)beta(1) and alpha(1)beta(1) have been shown to modulate cellular activities of fibroblasts on contact with fibrillar collagen. Previously it has been shown that collagen binding to alpha(2)beta(1) regulates matrix metalloproteinase MMP-1 and membrane-type MT1-MMP expression. Jararhagin is a snake venom metalloproteinase of the Reprolysin family of zinc metalloproteinases, containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains. Jararhagin blocks type I collagen-induced platelet aggregation by binding to the alpha(2)beta(1) integrin and inhibiting collagen-mediated intracellular signaling events. Here we present evidence that, in contrast to the observations in platelets, jararhagin binding to the integrin receptor alpha(2)beta(1) in fibroblasts produces collagen-like cell signaling events such as up-regulation of MMP-1 and MT1-MMP. Inactivation of the metalloproteinase domain had no effect on these properties of jararhagin. Thus, in fibroblasts the snake venom metalloproteinase jararhagin functions as a collagen-mimetic substrate that binds to and activates integrins. Given the homology between the metalloproteinase, disintegrin-like and cysteine-rich domains of jararhagin and those of the members of the ADAMs (a disintegrin-like and metalloproteinase) family of proteins, this work demonstrates the potential of the disintegrin-like/cysteine-rich domains in the ADAMs as cellular signaling agents to elicit responses relevant to the biological function of these proteins.  相似文献   

3.
Wang WJ 《Biochimie》2007,89(1):105-115
AAV1, an alkaline glycoprotein (GP), was purified from Agkistrodon acutus venom by two chromatographic steps on successive DEAE-Sephadex A-50 and Superdex 75 FPLC columns. AAV1 on SDS-PAGE under non-reducing conditions migrated as a monomeric and a polymeric forms with apparent molecular mass of 57 and 180 kDa, respectively. Upon reduction, it appeared as a single broad band with a mass of 50.3 kDa corresponding to the size of a typical P-III metalloproteinase acurhagin. The N-terminal sequence of an autoproteolytical 30 kDa-fragment of AAV1 showed a high homology to that of venom proteins with Metalloproteinase, Disintegrin-like, and Cysteine-rich (MDC) domains. Although it was devoid of cleaving activity toward gelatin, fibronectin and prothrombin, AAV1 preferentially digested the Aalpha chain of fibrinogen and followed by the Bbeta chain, leading to the inhibition of fibrinogen-induced platelet aggregation in elastase-treated human platelets. However, the proteolytic activity of AAV1 was completely inactivated by the chelating agent but not serine proteinase inhibitor. Furthermore, AAV1 could concentration-dependently inhibit platelet aggregation and suppress tyrosine phosphorylation of intracellular proteins in collagen- and convulxin-stimulated platelets, respectively. The interaction of MDC domains in AAV1 molecule with platelet GPVI was responsible for the inhibitory effect of AAV1 on collagen- and convulxin-induced platelet aggregation. Taken together, these pieces of evidence suggest that AAV1 from Formosan viper venom belongs to a new member of high-molecular mass metalloproteinase family and functions as a GPVI antagonist.  相似文献   

4.
Disintegrin is one of the functionally distinct domains in high molecular weight metalloproteases from various snake venoms and generally has an Arg-Gly-Asp (RGD) sequence that is recognized by specific cell surface integrins. A cDNA encoding the disintegrin-like domain of a snake venom metalloprotease was cloned, expressed in Pichia pastoris, and molecular function of the recombinant protein was characterized. The cDNA sequence indicated that the disintegrin-like domain contains an Asp-Glu-Cys-Asp (DECD) sequence in place of the RGD motif. The expressed disintegrin-like protein was designated as halydin and it was able to inhibit human platelet aggregation in a dose-dependent manner. Unlike other typical RGD-disintegrins, the recombinant non-RGD disintegrin, halydin, inhibited platelet aggregation by suppressing platelet adhesion to collagen rather than by blocking fibrinogen binding to glycoprotein (GP) IIb-IIIa on the platelet surface. Experimental evidence suggests that halydin binds to integrin alpha2beta1 on the platelet surface.  相似文献   

5.
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.  相似文献   

6.
The primary structure of kaouthiagin, a metalloproteinase from the venom of the cobra snake Naja kaouthia which specifically cleaves human von Willebrand factor (VWF), was determined by amino acid sequencing. Kaouthiagin is composed of 401 amino acid residues and one Asn-linked sugar chain. The sequence is highly similar to those of high-molecular mass snake venom metalloproteinases from viperid and crotalid venoms comprised of metalloproteinase, disintegrin-like, and Cys-rich domains. The metalloproteinase domain had a zinc-binding motif (HEXXHXXGXXH), which is highly conserved in the metzincin family. Kaouthiagin had an HDCD sequence in the disintegrin-like domain and uniquely had an RGD sequence in the Cys-rich domain. Metalloproteinase-inactivated kaouthiagin had no effect on VWF-induced platelet aggregation but still had an inhibitory effect on the collagen-induced platelet aggregation with an IC(50) of 0.2 microM, suggesting the presence of disintegrin-like activity in kaouthiagin. To examine the effects of these HDCD and RGD sequences, we prepared synthetic peptides cyclized by an S-S linkage. Both the synthetic cyclized peptides from the disintegrin-like domain and from the Cys-rich domain) had an inhibitory effect on collagen-induced platelet aggregation with IC(50) values of approximately 90 and approximately 4.5 microM, respectively. The linear peptide (RAAKHDCDLPELC) and the cyclized peptide had little effect on collagen-induced platelet aggregation. These results suggest that kaouthiagin not only inhibits VWF-induced platelet aggregation by cleaving VWF but also disturbs the agonist-induced platelet aggregation by both the disintegrin-like domain and the RGD sequence in the Cys-rich domain. Furthermore, our results imply that the corresponding part of the Cys-rich domain in other snake venom metalloproteinases also has a synergistic disturbing effect on platelet aggregation, serving as a second disintegrin-like domain. This is the first report of an elapid venom metalloproteinase with two disintegrin-like sequences.  相似文献   

7.
The alpha2beta1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Here we describe the isolation of a novel metalloproteinase/disintegrin, which is a potent inhibitor of the collagen binding to alpha2beta1 integrin. This 55-kDa protein (alternagin) and its disintegrin domain (alternagin-C) were isolated from Bothrops alternatus snake venom. Amino acid sequencing of alternagin-C revealed the disintegrin structure. Alternagin and alternagin-C inhibit collagen I-mediated adhesion of K562-alpha2beta1-transfected cells. The IC50 was 134 and 100 nM for alternagin and alternagin-C, respectively. Neither protein interfered with the adhesion of cells expressing alphaIIbeta3, alpha1beta1, alpha5beta1, alpha4beta1 alphavbeta3, and alpha9beta1 integrins to other ligands such as fibrinogen, fibronectin, and collagen IV. Alternagin and alternagin-C also mediated the adhesion of the K562-alpha2beta1-transfected cells. Our results show that the disintegrin-like domain of alternagin is responsible for its ability to inhibit collagen binding to alpha2beta1 integrin.  相似文献   

8.
Leberagin-C, a new member of the disintegrin-like/cysteine-rich (D/C) family, was purified to homogeneity from the venom of Tunisian snake Macrovipera lebetina transmediterranea. It is a monomeric protein with a molecular mass of 25,787 Da. Its complete sequence of 205 amino acid residues was established by cDNA cloning. The leberagin-C shows many conserved sequences with other known D/C proteins, like the SECD binding sites and a pattern of 28 cysteines. It is the first purified protein from M. lebetina transmediterranea with only two disintegrin-like/cysteine-rich domains. Leberagin-C is able to inhibit platelet aggregation induced by thrombin and arachidonic acid with IC50 of 40 and 50 nM respectively. It was also able to inhibit the adhesion of melanoma tumour cells on fibrinogen and fibronectin, by interfering with the function of alphavbeta3 and, to a lesser extent, with alphavbeta6 and alpha5beta1 integrins. To our knowledge, leberagin-C is the sole described D/C protein that does not specifically interact with the alpha2beta1 integrin. Structure–activity relationship study of leberagin-C suggested that there are some important amino acid differences with jararhagin, the most studied PIII metalloprotease from Bothrops jararaca, notably around the SECD motif in its disintegrin-like domain. Other regions implicated in leberagin-C specificities could not be excluded.  相似文献   

9.
Convulxin (CVX), a C-type lectin, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, causes cardiovascular and respiratory disturbances and is a potent platelet activator which binds to platelet glycoprotein GPVI. The structure of CVX has been solved at 2.4A resolution to a crystallographic residual of 18.6% (R(free)=26.4%). CVX is a disulfide linked heterodimer consisting of homologous alpha and beta chains. The heterodimers are additionally linked by disulfide bridges to form cyclic alpha(4)beta(4)heterotetramers. These domains exhibit significant homology to the carbohydrate-binding domains of C-type lectins, to the factor IX-binding protein (IX-bp), and to flavocetin-A (Fl-A) but sequence and structural differences are observed in both the domains in the putative Ca(2+)and carbohydrate binding regions.  相似文献   

10.
A novel non-hemorrhagic metalloproteinase, AHPM, was purified from the venom of Agkistrodon halys pallas by a combination of ion-exchange and gel filtration chromatography. AHPM is a dimeric glycoprotein with multiple pIs around pH 7.9 and has a molecular mass of 110 kDa with two blocked N-terminuses. Partial sequence of AHPM obtained by LC-MS/MS analysis together with its dimeric nature reveals that it is a P-IIIc snake venom metalloproteinase composed of metalloproteinase, disintegrin-like and cysteine-rich domains. AHPM has a conserved DECD sequence in the disintegrin-like domain. AHPM hydrolyzes casein and fibrinogen and also dissolves fibrin clots and the proteolytic activity is abolished by EDTA, but not by PMSF, suggesting that it is a metalloproteinase. The protease hydrolyzes rapidly the Aα-chain of fibrinogen followed by the Bβ-chain and does not cleave the γ-chain. AHPM contains endogenous Zn2+ and Ca2+ ions at a molar ratio of 1:1.9 and 1:4.2, respectively, and Zn2+ ions are essential for its proteolytic activity. AHPM inhibits collagen-and ADP-induced platelet aggregation with half maximal inhibitory concentrations of 200 ± 8 nM and 280 ± 10 nM, respectively. EDTA markedly attenuates the inhibition of ADP-induced platelet aggregation by AHPM, indicating that the fibrinogenolytic activity of AHPM is involved in its inhibition of ADP-induced platelet aggregation. AHPM is devoid of hemorrhagic activity when injected (up to 30 μg) subcutaneously into mice. AHPM is so far identified as first non-hemorrhagic P-IIIc SVMP which has both fibrinolytic and platelet aggregation-inhibition activities. The bifunctional enzyme may have a potential clinical application as a thrombolytic agent.  相似文献   

11.
Convulxin (CVX), a C-type snake protein from Crotalus durissus terrificus venom, is the quintessential agonist for studies of the collagen receptor, glycoprotein VI (GPVI) and its role in platelet adhesion to collagens. In this study, CVX, purified from venom, behaves as expected, i.e. it binds to platelet GPVI and recombinant human GPVI, induces platelet aggregation and platelet prothrombinase activity, and binds uniquely to GPVI in ligand blots of SDS-denatured proteins. Nonetheless, we find that CVX has a dual specificity for both GPVI and native but not denatured human GPIb alpha. First, CVX binds to human GPIb alpha expressed on the surface of CHO cells. Second, CVX binds weakly to murine platelet GPIb alpha but more strongly to human platelet GPIb alpha, as evidenced by comparative binding to wild-type, GPVI(-/-), FcR gamma (-/-), and human GPIb transgenic mice. Third, the binding of CVX to human GPIb alpha is inhibited by soluble, recombinant human GPVI. Fourth, CVX binding to GPIb alpha is disrupted by phenylalanine substitutions at GPIb alpha tyrosine-276, tyrosine-278, and tyrosine-279, which also disrupts von Willebrand factor and alpha-thrombin binding to GPIb alpha. Fifth, CVX binding to GPIb alpha on Chinese hamster ovary cell transfectants is inhibited by function-blocking murine monoclonal anti-GPIb alpha antibodies. Lastly, CVX fails to bind to denatured GPIb alpha in detergent extracts of platelets. Three separate preparations of CVX (two purified by the authors; one obtained commercially) produced equivalent results. These results indicate that CVX exhibits dual specificity for both native GPIb alpha and GPVI. Furthermore, the binding site on GPIb alpha for CVX may be close to that for von Willebrand factor. Therefore, a contribution of GPIb alpha to CVX-induced platelet responses needs to be carefully re-evaluated.  相似文献   

12.
The P-III class of venom metalloproteinases has, in addition to the proteinase domain, a disintegrin-like domain and a cysteine-rich domain. Recent evidence has shown that the nonproteinase domains of the P-III class of hemorrhagic metalloproteinases function in the inhibition of platelet aggregation by blocking essential procoagulant integrins on platelets. A specific role for the highly conserved cysteine-rich domain has yet to be described. In this study, we expressed the cysteine-rich domain from the hemorrhagic metalloproteinase atrolysin A and demonstrated its ability to inhibit collagen-stimulated platelet aggregation. Additionally, the cysteine-rich domain was shown to interact with MG-63 cells to inhibit adhesion to collagen I. These data suggest a functional role for the cysteine-rich domain of the P-III toxins in the observed coagulopathy by targeting the toxin to platelets and inhibiting collagen-stimulated platelet aggregation. These characteristics may function to synergistically increase the hemorrhagic effect of the toxins.  相似文献   

13.
Thrombus formation in hemostasis or thrombotic disease is initiated by adhesion of circulating platelets to damaged blood vessel walls. Exposed subendothelial collagen interacting with platelet glycoprotein (GP) VI leads to platelet activation and integrin alpha(IIb)beta(3)-mediated aggregation. We previously showed that ligand binding to GPVI also induces metalloproteinase-dependent shedding, generating an approximately 55-kDa soluble ectodomain fragment and an approximately 10-kDa membrane-associated remnant. Here, treatment of platelets with collagen or the GPVI-targeting rattlesnake toxin convulxin also induces rapid (10-30 s) formation of a high molecular weight GPVI complex (GPVIc) under nonreducing conditions, as detected by immunoblotting with anti-GPVI antibodies. The appearance of an approximately 20-kDa remnant detectable using a polyclonal antibody against the GPVI cytoplasmic tail under nonreducing, but not reducing, conditions after ectodomain shedding and nonreduced/reduced two-dimensional SDS-polyacrylamide gel analysis of biotinylated platelets confirmed that that GPVIc was a homodimer. Formation of disulfide-linked GPVIc was prolonged in the presence of metalloproteinase inhibitor GM6001 and was independent of GPVI signaling because it was unaffected by inhibitors of Src kinases, Syk, or phosphoinositide 3-kinase. To identify the thiol involved in disulfide bond formation, wild-type or mutant GPVI, where two available sulfhydryls (Cys-274 and Cys-338) were individually mutated to serine, was expressed in rat basophilic leukemia cells. Dimerization of wild-type and C274S GPVI, but not the C338S mutant, was observed after treating cells with convulxin. We conclude that (i) a subpopulation of GPVI forms a constitutive dimer on the platelet surface, facilitating rapid disulfide cross-linking, (ii) convulxin or other GPVI agonists induce disulfide-linked GPVI dimerization independent of GPVI signaling, and (iii) the penultimate residue of the GPVI cytoplasmic tail, Cys-338, mediates disulfide-dependent dimer formation.  相似文献   

14.
Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from the venom of Calloselasma rhodostoma, induces platelet activation that can be blocked by monoclonal antibodies against alpha(2)beta(1) integrin. This finding suggested that clustering of alpha(2)beta(1) integrin by rhodocytin is sufficient to induce platelet activation and led to the hypothesis that collagen may activate platelets by a similar mechanism. In contrast to these findings, we provided evidence that rhodocytin does not bind to alpha(2)beta(1) integrin. Here we show that the Cre/loxP-mediated loss of beta(1) integrin on mouse platelets has no effect on rhodocytin-induced platelet activation, excluding an essential role of alpha(2)beta(1) integrin in this process. Furthermore, proteolytic cleavage of the 45-kDa N-terminal domain of glycoprotein (GP) Ibalpha either on normal or on beta(1)-null platelets had no significant effect on rhodocytin-induced platelet activation. Moreover, mouse platelets lacking both alpha(2)beta(1) integrin and the activating collagen receptor GPVI responded normally to rhodocytin. Finally, even after additional proteolytic removal of the 45-kDa N-terminal domain of GPIbalpha rhodocytin induced aggregation of these platelets. These results demonstrate that rhodocytin induces platelet activation by mechanisms that are fundamentally different from those induced by collagen.  相似文献   

15.
Activation of platelets by exposed collagen after vessel wall injury is a primary event in the pathogenesis of stroke and myocardial infarction. Two collagen receptors, integrin alpha2beta1 and glycoprotein VI (GPVI), are expressed at similar levels on human and mouse platelets, but their individual roles during collagen activation remain poorly defined. Recent genetic and pharmacologic experiments have revealed an essential role for GPVI but have failed to define the role of alpha2beta1 or explain how two structurally distinct collagen receptors might function together to mediate platelet collagen responses. Discriminating the roles of these two collagen receptors is complicated by evidence suggesting that GPVI and platelet integrins may activate a common intracellular signaling pathway. To determine how alpha2beta1 and GPVI activate platelets in response to collagen, we have (i) examined collagen signaling conferred by expression of these receptors in hematopoietic cell lines; (ii) determined the effect of blocking each receptor on the activation of human platelets by collagen; (iii) generated low-GPVI mice in which the alpha2beta1/GPVI receptor ratio has been altered from 1:1 to 50:1 to expose alpha2beta1 function; (iv) studied the collagen responses of mouse platelets lacking LAT, an adaptor protein critical for GPVI but not integrin signaling; and (v) addressed the mechanism by which soluble collagens activate wild-type platelets. These studies demonstrate that alpha2beta1 requires inside-out signals to participate in collagen signaling and that alpha2beta1 is required for collagen activation of platelets when GPVI signals are reduced by blocking anti-GPVI antibody, low receptor number, specific disruption of the GPVI signaling pathway, or forms of collagen that bind weakly to GPVI relative to alpha2beta1. We propose a reciprocal two-receptor model of collagen signaling in platelets in which the nonintegrin receptor GPVI provides the primary collagen signal that activates and recruits the integrin receptor alpha2beta1 to further amplify collagen signals and fully activate platelets through a common intracellular signaling pathway. This model explains many of the genetic and pharmacologic observations regarding collagen signaling in platelets and demonstrates a novel mechanism by which hematopoietic cells integrate signaling by structurally distinct receptors that share a common ligand.  相似文献   

16.
A novel hemorrhagic metalloprotease, halysase, isolated from the snake venom of Gloydius halys induces apoptosis in endothelial cells. The purified metalloprotease is a monomeric glycoprotein with an isoelectric point of 4.8. Analysis of the cDNA sequence encoding halysase revealed that the enzyme consists of multifunctional domains including a proprotein domain, a protease domain, a disintegrin-like domain and a cysteine-rich domain. The metalloprotease has a DECD sequence in the disintegrin-like domain instead of the typical RGD sequence. Halysase strongly inhibits proliferation of human umbilical vein endothelial cells in a dose-dependent manner as well as adhesion of the cells to extracellular matrix proteins. The enzyme specifically hydrolyzes not only extracellular matrix proteins such as fibronectin, vitronectin, and type IV collagen, but also integrins alpha1beta1 and alpha5beta1. The apoptosis of endothelial cells induced by halysase is closely associated with activation of caspase-3 and decreased level of Bcl-X(L)/Bax. Apohalysase, which lacks metalloprotease activity, is also able to induce the apoptosis. Several lines of experimental evidence suggest that the protease domain and the disintegrin-like domain of halysase cooperatively contribute to the induction of endothelial cell apoptosis.  相似文献   

17.
The mechanism of signal transduction underlying the activation of platelets by collagen has been actively investigated for over 30 years, but the receptors involved remain incompletely understood. Studies of human platelets, which are unresponsive to collagen, mouse knockout models, and platelet biochemical studies support the hypothesis that the recently cloned platelet surface protein GPVI functions as a signaling receptor for collagen. To directly test this hypothesis, we have expressed wild-type and mutant forms of GPVI in RBL-2H3 cells, which express the Fcepsilon receptor gamma-chain (Fc Rgamma), the putative signaling co-receptor for GPVI in platelets, but lack GPVI itself. Expression of GPVI in RBL-2H3 cells confers strong adhesive and signaling responses to convulxin (a snake venom protein that directly binds GPVI) and weak responsiveness to collagen-related peptide but no responsiveness to collagen. To elucidate the mechanism of GPVI intracellular signaling, mutations were introduced in the receptor's transmembrane domain and C-terminal tail. Unlike reported studies of other Fc Rgamma partners, these studies reveal that both the GPVI transmembrane arginine and intracellular C-tail are necessary for coupling to Fc Rgamma and for signal transduction. To our knowledge, these studies are the first to demonstrate a direct signaling role for GPVI and the first to directly test the role of GPVI as a collagen receptor. Our results suggest that GPVI may be necessary but not sufficient for collagen signaling and that a distinct ligand-binding collagen receptor such as the alpha(2)beta(1) integrin is likely to play a necessary role for collagen signaling as well as adhesion in platelets.  相似文献   

18.
Halysase, a hemorrhagic metalloprotease, has an apparent molecular weight of 66kDa and belongs to the class P-III snake venom metalloprotease. Class P-III snake venom metalloproteases have multifunctional domains including a protease domain and a disintegrin-like domain. Halysase was able to preferentially hydrolyze the alpha-chain of fibrinogen. Proteolytic activity of the enzyme was completely inhibited by metal chelating agents but not by other typical protease inhibitors. The enzyme principally cleaves X-Leu, X-Tyr, X-Phe, and X-Ala peptide bonds of the oxidized insulin B-chain. Halysase strongly suppresses collagen-induced human platelet aggregation in a dose-dependent manner. Apohalysase that is devoid of its metalloprotease activity was also able to inhibit the platelet aggregation to a certain extent. Experimental evidence clearly indicates that each of the two distinct domains of halysase, the metalloprotease and the disintegrin-like domains, plays its characteristic role to inhibit human platelet aggregation.  相似文献   

19.
Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  相似文献   

20.
Platelet activation by collagen relies on the interaction of the receptor glycoprotein VI (GPVI) with collagen helices. We have previously generated two recombinant single chain human antibodies (scFvs) to human GPVI. The first, 10B12, binds to the collagen-binding site on the apical surface between the two immunoglobulin-like domains (D1D2) of the receptor and so directly inhibits GPVI function. The second, 1C3, binds D1D2 independently of 10B12 and has been shown to have a more subtle effect on platelet responses to collagen. Here we have shown that 1C3 potentiates the effect of 10B12 on platelet aggregation induced by collagen and cross-linked collagen-related peptide (CRP-XL). We investigated this by measuring the effect of both scFvs on the binding of D1D2 to immobilized collagen and CRP. As expected, 10B12 completely inhibited binding of GPVI to each ligand in a dose-dependent manner. However, 1C3 inhibited only a proportion of GPVI binding to its ligands, implying that it interferes with another aspect of ligand recognition by GPVI. To further understand the mode of inhibition, we used a unique set of CRPs in which the content of critical glycine-proline-hydroxyproline (GPO) triplets was varied in relation to an "inert" scaffold sequence of GPP motifs. We observed that a stepwise increase in D1D2 binding with (GPO)(2) content was blocked by 1C3. Together these results indicate that 1C3 inhibits clustering of the immunoglobulin-like domains of GPVI on collagen/CRPs, a conclusion that is supported by mapping the 1C3 epitope to the region including isoleucine 148 in D2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号