首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The core histone gene family ofAspergillus nidulans was characterized. The H2A, H2B and H3 genes are unique in theA. nidulans genome. In contrast there are two H4 genes, H4.1 and H4.2. As previously reported for the H2A gene (May and Morris 1987) introns also interrupt the other core histone genes. The H2B gene, like the H2A gene, is interrupted by three introns, the H3 and H4.1 gene are each interrupted by two introns and the H4.2 gene contains one intron. The position of the single intron in H4.2 is the same as that the first intron of the H4.1 gene. The H2A and H2B genes are arranged as a gene pair separated by approximately 600 by and are divergently transcribed. The H3 and H4.1 genes are similarly arranged and are separated by approximately 800 bp. The H4.2 gene is not closely linked to either the H2A-H2B or H3-H4.1 gene pairs. Using pulse field gel electrophoresis an electrophoretic karyotype was established forA. nidulans. This karyotype was used to assign the H3–H4.1 gene pair and the H4.2 gene to linkage group VIII and the H2A–H2B gene pair to either linkage group III or VI. The abundance of each of the histone messenger RNAs was determined to be cell cycle regulated but the abundance of the H4.2 mRNA appears to be regulated differently from the others.  相似文献   

2.
Steady-state kinetic approaches were used to investigate the binding of a novel Penicillium funiculosum xylanase, XYNC, with three known xylanase inhibitor proteins from wheat (Triticum aestivum). The xylanase gene (xynC) was cloned from a P. funiculosum genomic library and the deduced amino acid sequence of XYNC exhibited high sequence similarity with fungal family 11 xylanases. xynC was overexpressed in P. funiculosum and the product (XYNC: M(r)=23.6 kDa; pI=3.7) purified and shown to efficiently degrade birchwood xylan [K(m)=0.47% w/v, Vmax=2540 micromol xylose min(-1) (mg protein)(-1) at pH 5.5 and 30 degrees C] and soluble wheat arabinoxylans [K(m)=1.45% w/v, Vmax=7190 micromol xylose min(-1) mg protein)(-1) at pH 5.5 and 30 degrees C]. The xylanase activity of XYNC was inhibited strongly by three xylanase inhibitor proteins from wheat; XIP-I, TAXI I and TAXI II. The inhibition for each was competitive, with very tight binding (K(i)=3.4, 16 and 17 nM, respectively) equivalent to free energy changes (deltaG degrees ) of -49, -45 and -45 kJ mol(-1). This is the first report describing a xylanase that is inhibited by all three wheat xylanase inhibitor proteins described to date.  相似文献   

3.
The filamentous fungus Penicillium funiculosum produces a mixture of modular and non-modular xylanases belonging to different glycoside hydrolase (GH) families. In the present study, we heterologously expressed the cDNA encoding GH11 xylanase B (XYNB) and studied the enzymatic properties of the recombinant enzyme. Expression in Escherichia coli led to the partial purification of a glutathione fusion protein from the soluble fraction whereas the recombinant protein produced in Pichia pastoris was successfully purified using a one-step chromatography. Despite O-glycosylation heterogeneity, the purified enzyme efficiently degraded low viscosity xylan [K(m)=40+/-3 g l(-1), V(max)=16.1+/-0.8 micromol xylose min(-1) and k(cat)=5405+/-150 s(-1) at pH 4.2 and 45 degrees C] and medium viscosity xylan [K(m)=34.5+/-3.2 g l(-1), V(max)=14.9+/-1.0 micromol xylose min(-1)k(cat)=4966+/-333 s(-1) at pH 4.2 and 45 degrees C]. XYNB was further tested for its ability to interact with wheat xylanase inhibitors. The xylanase activity of XYNB produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 89.7+/-8.5 and 2.9+/-0.3 nM, respectively, whereas no inhibition was detected with TAXI-II. Physical interaction of both TAXI-I and XIP-I with XYNB was observed using titration curves across a pH range 3-9.  相似文献   

4.
The distal serpin subcluster contains genes encoding alpha1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL) and the KAL-like protein, which are expressed in hepatocytes, but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified 12 Dnase I-hypersensitive sites (DHSs) that were distributed throughout the entire subcluster, with the promoters of expressed genes accessible to restriction enzyme digestion. In astrocytes, only six DHSs were located exclusively in the 5' flanking region of the act gene, with its promoter also accessible to restriction enzyme digestion. The acetylation of histone H3 and H4 was found throughout the subcluster in both cell types but this acetylation did not correlate with the expression pattern of these serpin genes. Analysis of histone modifications at the promoters of the act and pci genes revealed that methylation of histone H3 on lysine 4 correlated with their expression pattern in both cell types. In addition, inhibition of methyltransferase activity resulted in suppression of ACT and PCI mRNA expression. We propose that lysine 4 methylation of histone H3 correlates with the tissue-specific expression pattern of these serpin genes.  相似文献   

5.
There are four genes for acid-sensing ion channels (ASICs) in the genome of mammalian species. Whereas ASIC1 to ASIC3 form functional H+-gated Na+ channels, ASIC4 is not gated by H+, and its function is unknown. Zebrafish has two ASIC4 paralogs: zASIC4.1 and zASIC4.2. Whereas zASIC4.1 is gated by extracellular H+, zASIC4.2 is not. This differential response to H+ makes zASIC4 paralogs a good model to study the properties of this ion channel. In this study, we found that surface expression of homomeric zASIC4.2 is higher than that of zASIC4.1. Surface expression of zASIC4.1 was much increased by formation of heteromeric channels, suggesting that zASIC4.1 contributes to heteromeric ASICs in zebrafish neurons. Robust surface expression of H+-insensitive zASIC4.2 suggests that zASIC4.2 functions as a homomer and is gated by an as yet unknown stimulus, different from H+. Moreover, we identified a small region just distal to the first transmembrane domain that is crucial for the differential H+ response of the two paralogs. This post-TM1 domain may have a general role in gating of members of this gene family.  相似文献   

6.
7.
8.
Murine CDP/Cux, a homologue of the Drosophila Cut homeoprotein, modulates the promoter activity of cell cycle-related and cell-type-specific genes. CDP/Cux interacts with histone gene promoters as the DNA binding subunit of a large nuclear complex (HiNF-D). CDP/Cux is a ubiquitous protein containing four conserved DNA binding domains: three Cut repeats and a homeodomain. In this study, we analyzed genetically targeted mice (Cutl1(tm2Ejn), referred to as Delta C) that express a mutant CDP/Cux protein with a deletion of the C terminus, including the homeodomain. In comparison to the wild-type protein, indirect immunofluorescence showed that the mutant protein exhibited significantly reduced nuclear localization. Consistent with these data, DNA binding activity of HiNF-D was lost in nuclear extracts derived from mouse embryonic fibroblasts (MEFs) or adult tissues of homozygous mutant (Delta C(-/-)) mice, indicating the functional loss of CDP/Cux protein in the nucleus. No significant difference in growth characteristics or total histone H4 mRNA levels was observed between wild-type and Delta C(-/-) MEFs in culture. However, specific histone genes (H4.1 and H1) containing CDP/Cux binding sites have reduced expression levels in homozygous mutant MEFs. Stringent control of growth and differentiation appears to be compromised in vivo. Homozygous mutant mice have stunted growth (20 to 50% weight reduction), a high postnatal death rate of 60 to 70%, sparse abnormal coat hair, and severely reduced fertility. The deregulated hair cycle and severely diminished fertility in Cutl1(tm2Ejn/tm2Ejn) mice suggest that CDP/Cux is required for the developmental control of dermal and reproductive functions.  相似文献   

9.
Genes encoding three enzymes with xylanase activity from the filamentous fungus Penicillium funiculosum are described. Two of the encoded xylanases are predicted to be modular in structure with catalytic and substrate-binding domains separated by a serine and threonine-rich linker region; the other had none of these properties and was non-modular. In order to develop P. funiculosum as a host for the secreted production of heterologous proteins, each of the xylanases was assessed for use as a carrier protein in a fusion strategy. We show that one of the modular xylanases (encoded by xynA) was an effective carrier protein but the other (encoded by xynB) and the non-modular xylanase (encoded by xynC) were not effective as secretion carriers. We show that the beta-glucuronidase (GUS) protein from Escherichia coli is secreted by P. funiculosum when expressed as an XYNA fusion but that the secreted GUS protein, cleaved in vivo from XYNA, is glycosylated and enzymatically inactive.  相似文献   

10.
The replication of eukaryotic genomes necessitates the coordination of histone biosynthesis with DNA replication at the onset of S phase. The multiple histone H4 genes encode identical proteins, but their regulatory sequences differ. The contributions of these individual genes to histone H4 mRNA expression have not been described. We have determined, by real-time quantitative PCR and RNase protection, that the human histone H4 genes are not equally expressed and that a subset contributes disproportionately to the total pool of H4 mRNA. Differences in histone H4 gene expression can be attributed to observed unequal activities of the H4 gene promoters, which exhibit variations in gene regulatory elements. The overall expression pattern of the histone H4 gene complement is similar in normal and cancer cells. However, H4 genes that are moderately expressed in normal cells are sporadically silenced in tumor cells with compensation of expression by other H4 gene copies. Chromatin immunoprecipitation analyses and in vitro DNA binding assays indicated that 11 of the 15 histone H4 genes interact with the cell cycle regulatory histone nuclear factor P, which forms a complex with the cyclin E/CDK2-responsive co-regulator p220(NPAT). These 11 H4 genes account for 95% of the histone H4 mRNA pool. We conclude that the cyclin E/CDK2/p220(NPAT)/histone nuclear factor P signaling pathway is the principal regulator of histone H4 biosynthesis.  相似文献   

11.
12.
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1.  相似文献   

13.
14.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

15.
目的通过比较不同细胞类型之间MafA基因转录起始区的组蛋白修饰差异,探讨组蛋白修饰对MafA基因转录表达的作用。方法采用染色质免疫共沉淀-实时定量PCR法检测小鼠胰岛素瘤β细胞(NIT-1)、NIH小鼠成纤维细胞(NIH3T3)及小鼠胚胎干细胞(mES)三者中的MafA和MLH1基因转录起始区组蛋白修饰(H3K4m3、H3K9m3和H3乙酰化)的状况。同时采用实时定量RT-PCR检测上述三种细胞各基因mRNA表达水平。分析基因的H3K4m3、H3K9m3和H3乙酰化修饰与基因表达之间的相互关系。结果 (1)以mES细胞为参照,NIT-1细胞MafA基因的转录起始区的H3K4m3修饰水平明显增高(P〈0.05),H3K9m3修饰水平明显降低(P〈0.05);NIH 3T3细胞MafA基因的转录起始区的H3K9m3修饰水平明显增高(P〈0.05),H3K4m3修饰水平明显降低(P〈0.05);(2)MafA基因的仅在NIT-1细胞表达,其表达与H3K4m3修饰存在直线相关(相关系数0.995);与H3K9m3修饰存在直线负相关(相关系数-0.751);(3)管家基因MLH1的表达与所检测组蛋白修饰无相关性。结论 H3K9m3与H3K4m3修饰能相互协调,共同调控MafA基因的表达,对胚胎干细胞向β细胞分化具有重要的意义。  相似文献   

16.
A thermostable glycoside hydrolase family-10 xylanase originating from Rhodothermus marinus was cloned and expressed in the methylotrophic yeast Pichia pastoris (SMD1168H). The DNA sequence from Rmxyn10A encoding the xylanase catalytic module was PCR-amplified and cloned in frame with the Saccharomyces cerevisiae alpha-factor secretion signal under the control of the alcohol oxidase (AOX1) promotor. Optimisation of enzyme production in batch fermentors, with methanol as a sole carbon source, enabled secretion yields up to 3gl(-1) xylanase with a maximum activity of 3130Ul(-1) to be achieved. N-terminal sequence analysis of the heterologous xylanase indicated that the secretion signal was correctly processed in P. pastoris and the molecular weight of 37kDa was in agreement with the theoretically calculated molecular mass. Introduction of a heat-pretreatment step was however necessary in order to fold the heterologous xylanase to an active state, and at the conditions used this step yielded a 200-fold increase in xylanase activity. Thermostability of the produced xylanase was monitored by differential-scanning calorimetry, and the transition temperature (T(m)) was 78 degrees C. R. marinus xylanase is the first reported thermostable gram-negative bacterial xylanase efficiently secreted by P. pastoris.  相似文献   

17.
草酸青霉能产生完整的纤维素酶和木聚糖酶酶系,其纤维素酶基因的表达主要受转录因子的调控。前期工作中,通过对草酸青霉菌株HP7-1在不同碳源培养基培养条件下转录组的比较分析,获得了调控纤维素酶和木聚糖酶产量的候选调控基因集。本研究以草酸青霉ΔPoxKu70为出发菌株,通过同源重组法,构建并获得了其中一个候选调控基因POX05145的缺失突变株ΔPOX05145。在微结晶纤维素Avicel诱导培养条件下,与出发菌株ΔPoxKu70相比,ΔPOX05145的纤维素酶产量和木聚糖酶产量发生了显著改变。其中,在诱导第2天时,ΔPOX05145对硝基苯-β-D-纤维二糖苷酶产量和木聚糖酶产量分别上升43.4%和164.7%,对硝基苯-β-D-半乳糖吡喃葡萄糖苷酶产量下降92.8%,但是,滤纸酶产量和羧甲基纤维素酶产量没有显著变化。然而,在诱导第4天时,所有纤维素酶产量和木聚糖酶产量上升100.4%~294.0%。实时荧光定量PCR检测表明POX05145在不同的时间不同程度的调控主要的纤维素酶基因和木聚糖酶基因的表达。序列分析表明POX05145含有一个GAL4类锌指结构的DNA结合功能域和一个保守的真菌特有的转录因子结构域(Fungal_TF_MHR)。  相似文献   

18.
Histone H3 and H4 gene deletions in Saccharomyces cerevisiae   总被引:7,自引:1,他引:6       下载免费PDF全文
The genome of haploid Saccharomyces cerevisiae contains two nonallelic sets of histone H3 and H4 genes. Strains with deletions of each of these loci were constructed by gene replacement techniques. Mutants containing deletions of either gene set were viable, however meiotic segregants lacking both histone H3 and H4 gene loci were inviable. In haploid cells no phenotypic expression of the histone gene deletions was observed; deletion mutants had wild-type growth rates, were not temperature sensitive for growth, and mated normally. However, diploids homozygous for the H3-H4 gene deletions were slightly defective in their growth and cell cycle progression. The generation times of the diploid mutants were longer than wild-type cells, the size distributions of cells from exponentially growing cultures were skewed towards larger cell volumes, and the G1 period of the mutant cells was longer than that of the wild-type diploid. The homozygous deletion of the copy-II set of H3-H4 genes in diploids also increased the frequency of mitotic chromosome loss as measured using a circular plasmid minichromosome assay.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号