首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular resistance (RT) as well as pre- (Ra) and post- (Rv) capillary resistances could be calculated. In both CP and CF perfused lobes, 5-min arachidonic acid (AA) infusions (0.085 +/- 0.005 to 2.80 +/- 0.16 mg X min-1 X 100 g lung-1) increased RT, Rv, and Pc (P less than 0.05 at the highest dose), while Ra was not significantly altered and Ra/Rv fell (P less than 0.05 at the highest AA dose). In five CP-perfused lobes, the effect of AA infusion on the pulmonary capillary filtration coefficient (Kf,C) was also determined. Neither low-dose AA (0.167 +/- 0.033 mg X min-1 X 100 g-1) nor high-dose AA (1.35 +/- 0.39 mg X min-1 X 100 g-1) altered Kf,C from control values (0.19 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1). The hemodynamic response to AA was attenuated by prior administration of indomethacin (n = 2). We conclude that AA infusion in blood-perfused canine lung lobes increased RT and Pc by increasing Rv and that microvascular permeability is unaltered by AA infusion.  相似文献   

2.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study evaluated the effect of ischemia-reperfusion (I-R) on pulmonary capillary permeability in isolated rabbit lungs and the roles of xanthine oxidase (XO), aldehyde oxidase (AO), and neutrophils (PMN) in producing this lung injury. Effects of XO and AO were studied by inactivation with a tungsten-enriched diet (0.7 g/kg) and inhibition of XO by allopurinol (100 microM) or AO by menadione (3.5 microM). PMN effects were studied by preventing endothelial adhesion with the monoclonal antibody IB4 (10 microM). Vascular permeability was evaluated by determining the capillary filtration coefficient (Kf,c) measured before and after I-R in all experimental conditions. Reperfusion after 2 h of ischemia significantly increased pulmonary capillary permeability (Kf,c changed from 0.096 +/- 0.014 to 0.213 +/- 0.025 ml.min-1. cmH2O-1.100 g-1), and this increase was blocked by the addition of catalase (50,000 U) at reperfusion (baseline Kf,c was 0.125 +/- 0.023 and 0.116 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). XO inactivation with the tungsten-supplemented diet and XO inhibition with allopurinol prevented the Kf,c increase observed after I-R (0.183 +/- 0.030 to 0.185 +/- 0.033 and 0.126 +/- 0.018 to 0.103 +/- 0.005 ml.min-1.cmH2O-1.100 g-1). Inhibition of AO had no effect on I-R injury (Kf,c 0.108 +/- 0.011 to 0.167 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). Preventing PMN adhesion resulted in significant attenuation of the change in Kf,c associated with I-R (0.112 +/- 0.032 to 0.090 +/- 0.065 ml.min-1.cmH2O-1.100 g-1). We conclude that XO and PMN adherence, but not AO, are involved in the increased capillary permeability associated with I-R.  相似文献   

5.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

6.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

7.
The base-line capillary filtration coefficient (Kf) obtained from rates of lobe weight gain during stepwise vascular pressure elevation is reported to be threefold greater in isolated than in intact dog lung. To further evaluate the stepwise pressure elevation technique, we obtained Kf in control and oleic acid-injured isolated lung. The left lower lung lobe was removed, placed on a balance, ventilated, and pump perfused with autogenous blood. Saline (n = 6) or oleic acid (n = 6) was infused, and rate of lobe weight gain was obtained during stepwise pressure elevation. Kf averaged 0.071 +/- 0.012 and 0.243 +/- 0.027 ml X min-1 X Torr-1 X 100 g-1 in the control and injured lobes, respectively. Stepwise pressure elevation can yield a base-line Kf in isolated lung similar to Kf's obtained from this and other gravimetric methods in intact and isolated lung. Furthermore, Kf increased severalfold following lung injury with oleic acid. The stepwise pressure elevation technique for Kf determination in isolated lung can be a useful tool for quantitating changes in vascular permeability.  相似文献   

8.
To determine whether the accelerated rate of lobe weight gain during severe pulmonary edema is attributed to increased permeability of the microvascular barrier or a loss of tissue forces opposing filtration, the effect of edema on capillary filtration coefficient (Kf,C), interstitial compliance (Ci), and the volume of fluid filtered after a step increase in microvascular pressure (delta Vi) were determined in eight isolated left lower lobes of dog lungs perfused at 37 degrees C with autologous blood. After attaining a base-line isogravimetric state, the capillary pressure (Pc) was increased in successive steps of 2, 5, and 10 cmH2O. This sequence of vascular pressure increases was repeated three times. Edema accumulation was expressed as weight gained as a percent of initial lobe weight (% delta Wt), and Kf,C was measured by time 0 extrapolation of the weight gain curve. An exponential rate constant for the decrease in the rate of weight gain with time (K) was calculated for each curve. Ci was then calculated by assuming that the capillary wall and interstitium constitute a resistance-capacitance network. Kf,C was not increased by edema formation in any group. Between mild (% delta Wt less than 30%) and severe edema states (% delta Wt greater than 50%) respective mean Ci increased significantly from 3.54 to 9.12 ml.cmH2O-1.100 g-1, K decreased from 0.089 to 0.036 min-1, and delta Vi increased from 1.28 to 2.4 ml.cmH2O-1.100 g-1. The delta Vi during each Pc increase was highly correlated with Kf,C and Ci when used together as independent variables (r = 0.99) but less well correlated when used separately.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

10.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hemodynamics and vascular permeability were studied during acute alveolar hypoxia in isolated canine lung lobes perfused at constant flow with autogenous blood. Hypoxia was induced in the presence (COI + Hypox, n = 6) or absence (Hypox, n = 6) of cyclooxygenase inhibition (COI) with indomethacin or meclofenamate. Hypoxic ventilation reduced blood PO2 from 143 to 25-29 Torr without a change in PCO2. During hypoxia a capillary filtration coefficient (Kf) was obtained gravimetrically as an index of vascular permeability to water. In COI + Hypox, pulmonary arterial pressure (Pa) increased from 11.5 +/- 0.7, post-COI normoxia, to a peak of 22.1 +/- 2.3 during hypoxia (P less than 0.01) without a change in capillary pressure (Pc). In contrast, hypoxia changed neither Pa nor Pc in Hypox relative to an untreated normoxic control group (Normox, n = 6, P greater than 0.05). Kfs (means +/- SE in ml.min-1.Torr-1.100 g-1) for Normox (0.070 +/- 0.014), Hypox (0.082 +/- 0.024), and COI + Hypox (0.057 +/- 0.017) did not differ from one another (P greater than 0.05). Although COI markedly enhanced the pressor response to acute alveolar hypoxia, hypoxia increased neither Pc nor vascular permeability regardless of COI.  相似文献   

12.
In systemic organs, ischemia-reperfusion injury is thought to occur during reperfusion, when oxygen is reintroduced to hypoxic ischemic tissue. In contrast, the ventilated lung may be more susceptible to injury during ischemia, before reperfusion, because oxygen tension will be high during ischemia and decrease with reperfusion. To evaluate this possibility, we compared the effects of hyperoxic ischemia alone and hyperoxic ischemia with normoxic reperfusion on vascular permeability in isolated ferret lungs. Permeability was estimated by measurement of filtration coefficient (Kf) and osmotic reflection coefficient for albumin (sigma alb), using methods that did not require reperfusion to make these measurements. Kf and sigma alb in control lungs (n = 5), which were ventilated with 14% O2-5% CO2 after minimal (15 +/- 1 min) ischemia, averaged 0.033 +/- 0.004 g.min-1.mmHg-1.100 g-1 and 0.69 +/- 0.07, respectively. These values did not differ from those reported in normal in vivo lungs of other species. The effects of short (54 +/- 9 min, n = 10) and long (180 min, n = 7) ischemia were evaluated in lungs ventilated with 95% O2-5% CO2. Kf and sigma alb did not change after short ischemia (Kf = 0.051 +/- 0.006 g.min-1.mmHg-1.100 g-1, sigma alb = 0.69 +/- 0.07) but increased significantly after long ischemia (Kf = 0.233 +/- 0.049 g.min-1 x mmHg-1 x 100 g-1, sigma alb = 0.36 +/- 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

14.
Transvascular fluid flux was induced in six isolated blood-perfused canine lobes by increasing and decreasing hydrostatic inflow pressure (Pi). Fluid flux was followed against the change in concentration of an impermeable tracer (Blue Dextran) measured directly with a colorimetric device. The time course of fluid flux was biphasic with an initial fast transient followed by a slow phase. Hematocrit changes unrelated to fluid flux occurred due to the Fahraeus effect, and their contribution to the total color signal was subtracted to determine the rate of fast fluid flux (Qf). Qf was related to Pi to derive fast-phase conductance (Kf). Slow-phase Kf was calculated from the constant rate of change of lobe weight. For a mean change in Pi of 7 cmH2O, 40% of the color signal was due to fluid flux. Fast- and slow-phase Kf's were 0.86 +/- 0.15 and 0.27 +/- 0.05 ml X min-1. cmH2O-1 X 100 g dry wt-1. The fast-phase Kf is smaller than that reported for plasma-perfused lobes. Possible explanations discussed are the nature of the perfusate, the mechanical properties of the interstitium, and the slow rate of rise of the driving pressure at the filtration site on the basis of a distributed model of pulmonary vascular compliance.  相似文献   

15.
The effects of adenosine (ADO) on pulmonary vascular resistance (PVR) distribution, vascular compliance (C), and permeability were determined in normal and PMA-injured isolated rabbit lungs perfused with a 1:1 mixture of 6% albumin in Krebs-Henseleit buffer and autologous blood. ADO or vehicle was continuously infused into the reservoir at 1,4, or 5 mumol/min after a 1-mumol bolus of ADO or vehicle. The capillary filtration coefficient (Kf) and arterial, venous, and double occlusion pressures were measured at baseline and 30 min after phorbol myristate acetate (PMA; 4 x 10(-8) M) or vehicle. Perfusate differential and total leukocyte counts as well as adenine nucleotides, 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), and thromboxane B2 (TxB2) concentrations were determined at each measurement period. ADO was recovered as hypoxanthine and inosine in the perfusate. ADO alone did not alter PVR, C, Kf, or TxB2 but reduced 6-keto-PGF1 alpha levels. PMA induced an increase in Kf (0.024 +/- 0.002 to 0.040 +/- 0.006 g.cmH2O-1.min-1, P less than 0.05) that was completely blocked by 4 or 5 mumol/min ADO. PVR increased by 63 +/- 11% after PMA, primarily in the arteries and arterial and venous microvessels. The postcapillary resistance increase was blunted by 4 mumol/min ADO; 5 mumol/min ADO prevented the PVR increase in all segments. ADO did not affect the initial adherence of neutrophils in the lung or the PMA-induced 87 +/- 2% decrease in circulating leukocytes (greater than 98% lymphocytes) or threefold increase in TxB2 levels. These results suggest that protection by ADO is not mediated by the altering of cyclooxygenase products or by leukocyte adherence.  相似文献   

16.
Segmental vascular resistances and compliances in dog lung   总被引:1,自引:0,他引:1  
The segmental distribution of vascular resistances and compliances were evaluated in isolated blood perfused lung lobes using arterial, venous, and double-occlusion pressures and were compared with filtration midpoint capillary pressures (Pc,f). We separated total vascular resistance (RT) and compliance (CT) into large artery (Ra, Ca), large vein (Rv, Cv), and microvascular compartments (Rmc, Cmc) at base-line and increased vascular pressures and during infusions of histamine, serotonin, and norepinephrine. In control lobes, double-occlusion pressure (Pdo) closely approximated Pc,f at all vascular pressures. Pre- and postcapillary resistance were approximately equal when referenced to either Pc,f or Pdo. Although Rmc comprised 42% of RT and Cmc constituted 76% of CT, a twofold increase in base-line Pc,f caused RT to decrease to 67% and Rmc/RT to 29% of control values, whereas CT decreased to 87% and Cmc/CT decreased to 88% of control values over the same Pc,f range. Mean static CT was 2.25 +/- 0.09 ml X cmH2O-1. 100 g-1, whereas dynamic CT was 1.54 +/- 0.08 ml X cmH2O-1. 100 g-1, or only 68% of static vascular compliance. Drug infusions increased mean RT from 4.2- to 5.3-fold and significantly decreased both static and dynamic CT. Although all vascular segments were constricted, histamine affected primarily large veins, serotonin increased Ra greater than Rv, and norepinephrine constricted upstream and downstream vessels about equally. Increased Pc,f in the presence of these drugs decreased RT significantly in every case primarily through attenuation of the drug vasoconstrictor effect on Rmc and decreased CT primarily due to a decrease in Cmc, but increased Cmc/(Ca + Cv). Thus the microvascular compartment appears to be the major site of both fluid filtration and vascular compliance and contributes significantly to total vascular resistance. Drug infusions constricted large and small vessel compartments as defined here, but increased Pc,f attenuated microvascular vasoconstriction and to a lesser extent large vessel vasoconstriction resulting in a reduced microvascular resistance in both drug-treated and control lobes. This effect can be attributed to recruitment and/or distension of microvessels and distension of larger vessels.  相似文献   

17.
The capillary filtration coefficient (Kf,c) is a sensitive and specific index of vascular permeability if surface area remains constant, but derecruitment might affect Kf,c in severely damaged lungs with high vascular resistance. We studied the effect of high and low blood flow rates on Kf,c in papaverine-pretreated blood-perfused isolated dog lungs perfused under zone 3 conditions with and without paraquat (PQ, 10(-2) M). Three Kf,cs were measured successively at hourly intervals for 5 h. These progressed sequentially from isogravimetric blood flow with low vascular pressure (I/L) to high flow with low vascular pressure (H/L) to high flow with high vascular pressure (H/H). The blood flows of H/L and H/H were greater than or equal to 1.5 times that of I/L. There were no significant changes in Kf,c in lungs without paraquat over a 50-fold range of blood flow rates. At 3 h after PQ, I/L-Kf,c was significantly increased and both isogravimetric capillary pressure and total protein reflection coefficient were decreased from base line. At 4 and 5 h, H/L-Kf,c was significantly greater than the corresponding I/L-Kf,c (1.01 +/- 0.22 vs. 0.69 +/- 0.09 and 1.26 +/- 0.19 vs. 0.79 +/- 0.10 ml.min-1.cmH2O-1.100 g-1, respectively) and isogravimetric blood flow decreased to 32.0 and 12.0% of base line, respectively. Pulmonary vascular resistance increased to 12 times base line at 5 h after PQ. We conclude that Kf,c is independent of blood flow in uninjured lungs. However, Kf,c measured at isogravimetric blood flow underestimated the degree of increase in Kf,c in severely damaged and edematous lungs because of a high vascular resistance and derecruitment of filtering surface area.  相似文献   

18.
Three independent methods were used to estimate filtration coefficient (Kf) in isolated dog lungs perfused with low-hematocrit (Hct) blood. Pulmonary vascular pressure was increased by 12-23 cmH2O to induce fluid filtration. Average Kf (ml.min-1 x cmH2O-1 x 100 g dry wt-1) for six lungs was 0.26 +/- 0.05 (SE) with use of equations describing conservation of optically measured protein labeled with indocyanine green. Good agreement was found when a simplified version of the multiequation theory was applied to the data (0.24 +/- 0.05). Both optical estimates were lower than those predicted by constant slope (0.55 +/- 0.07) or extrapolation (1.20 +/- 0.15) techniques, which are based on changes in total lung weight. Subsequent studies in five dog lungs investigated whether the higher Kf from weight analyses could be caused by prolonged pulmonary vascular filling. We found that 51Cr-labeled red blood cells (RBCs), monitored over the lung, continued to accumulate for 30 min after vascular pressure elevations of 9-16 cmH2O.Kf was determined by subtracting computed vascular filling from total weight change (0.28 +/- 0.06) and by perfusate Hct changes determined from radiolabeled RBCs (0.23 +/- 0.04). These values were similar to those obtained from analysis of optical data with the complete model (0.30 +/- 0.06), the simplified version (0.26 +/- 0.05), and from optically determined perfusate Hct (0.16 +/- 0.03). However, constant slope (0.47 +/- 0.04) and extrapolation (0.57 +/- 0.07) computations of Kf were higher than estimates from the other methods. Our studies indicate that prolonged blood volume changes may accompany vascular pressure elevations and produce overestimates of Kf with standard weight measurement techniques. However, Kf computed from optical measurements is independent of pulmonary blood volume changes.  相似文献   

19.
The Starling fluid filtration coefficient (Kf) of blood-perfused excised goat lungs was examined before and after infusion of Escherichia coli endotoxin. Kf was calculated from rate of weight gain as described by Drake et al. [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. These calculations were made twice during base line and then at hourly intervals for 5 h after infusion of 5 mg (approximately 250 micrograms/kg) of E. coli endotoxin or after injection of oleic acid (47 microliter/kg). All lungs were perfused at constant arterial and venous pressure under zone 3 conditions. Base-line Kf averaged 27 +/- 10 and 20 +/- 4 (SD) microliter.min-1.cmH2O-1.g dry wt-1 for endotoxin and oleic acid groups, respectively. It was unchanged in the endotoxin group throughout the experiment but approximately doubled in the oleic acid lungs. Pulmonary arterial and venous pressures were not changed significantly during the course of these experiments in either group. Lung wet-to-dry weight ratios of these lungs were 5.6 +/- 0.6 and 6.1 +/- 0.5 ml/g for the endotoxin and oleic acid groups, respectively. This compares with 4.6 +/- 0.5 ml/g for normal, freshly excised but not perfused goat lungs. The small change in lung water and unchanged pulmonary pressures after both endotoxin and oleic acid suggest that lung injury was minimal. We conclude that 1) endotoxin does not cause a direct injury to the endothelium of isolated lungs during the first 5 h of perfusion, and 2) neutrophils are not sufficient to cause increased Kf after endotoxin infusion in this preparation.  相似文献   

20.
Products of cyclooxygenase activity have been proposed to mediate the pulmonary hypertension and increased microvascular permeability associated with phorbol myristate acetate- (PMA) induced acute lung injury. Previously, we reported that thromboxane (Tx) does not mediate PMA-induced pulmonary hypertension in intact anesthetized dogs. In the present study, PMA was administered to isolated canine lungs perfused with autologous blood at constant flow to investigate a possible role for Tx in the PMA-induced increase in microvascular permeability. Changes in permeability were assessed by determining changes in the capillary filtration coefficient (Kfc). In lobes pretreated with papaverine to prevent PMA-induced increases in pulmonary vascular resistance, Kfc increased from a baseline value of 0.2 +/- 0.03 to 1.5 +/- 0.29 ml.min-1.cmH2O-1.100 g wet lobe wt-1 (P < 0.01) 30 min after PMA (5.8 x 10(-8) M, n = 10). Concomitantly, TxB2, the stable metabolite of TxA2, increased from 138 +/- 44 to 1,498 +/- 505 pg/ml (P < 0.05) in the blood. Both the selective Tx synthase inhibitor, OKY-046 (7 x 10(-4) M, n = 6), and the cyclooxygenase inhibitor, indomethacin (10(-4) M, n = 7), prevented the PMA-induced increase in TxB2, but neither compound attenuated the PMA-induced increase in Kfc. ONO-3708 (10(-6) M), a selective prostaglandin (PG) H2/TxA2 receptor antagonist, prevented the vasoconstriction resulting from administration of U-46619, a stable PGH2/TxA2 receptor agonist, but it did not prevent the PMA-induced increases in Kfc (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号