首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basic amphipathic alpha-helical peptides Ac-(Leu-Ala-Arg-Leu)3 or 4-NHCH3 (4(3) or 4(4)) and H-(Leu-Ala-Arg-Leu)3-(Leu-Arg-Ala-Leu)2 or 3-OH (4(5) or 4(6)) were synthesized and studied in terms of their interactions with phospholipid membranes, biological activity, and ion channel-forming ability. CD study of the peptides showed that they form alpha-helical structures in the presence of phospholipid liposomes and thus they have amphipathic distribution of the side chains along the axis of the helix. A leakage study of carboxyfluorescein encapsulated in phospholipid vesicles indicated that the peptides possess a highly potent ability to perturb the membrane structure. Membrane current measurements using the planar lipid bilayer technique revealed that the peptide 4(6), which was long enough to span the lipid bilayer in the alpha-helical structure, formed cation-selective ion channels at a concentration of 0.5 microM in a planar diphytanoylphosphatidylcholine bilayer. In contrast, other shorter peptides failed to form discrete and stable channels though they occasionally induced an increase in the membrane current with erratic conductance levels. The probability of detecting a conductance increase was in the order of 4(6) greater than 4(5) greater than 4(4) greater than 4(3), which corresponds to the order of the peptide chain lengths. Furthermore, 4(6) but not 4(5) showed an antimicrobial activity against both Gram-positive and -negative bacteria. The structure of ion channels formed by 4(6) and the relationship between the peptide chain length and biological activity of the synthetic peptides are discussed.  相似文献   

2.
S E Blondelle  R A Houghten 《Biochemistry》1992,31(50):12688-12694
Induced amphipathic alpha-helical conformations play an important role in the biological activity of peptides. By using reversed-phase high-performance liquid chromatography (RP-HPLC) as a means to study the secondary structure of peptides at aqueous/lipid interfaces, a sequence (Ac-LKLLKKLLKKLKKLLKKL-NH2) was found to readily adopt an amphipathic alpha-helical conformation upon interacting with the lipid groups of the stationary phase during RP-HPLC. This peptide exhibited potent antimicrobial activities against both Gram-positive and Gram-negative bacteria. We have prepared a complete set of omission, as well as of leucine and lysine substitution, analogs of this sequence. These analogs were used to investigate the effects of such alterations on the parent sequence's antimicrobial and hemolytic activities relative to each analog's behavior during RP-HPLC. The potential for the formation of ion channels through cell membranes by this amphipathic model peptide was also evaluated through preparation of analogs which varied in length from 8 to 22 residues, while maintaining their amphipathicity.  相似文献   

3.
The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the first internal repeat of the rat brain II sodium channel was investigated in the presence of DPC micelles by multidimensional solution NMR spectroscopy and solid-state NMR spectroscopy on oriented phospholipid bilayers. Both the anisotropic chemical shift observed by proton-decoupled (15)N solid-state NMR spectroscopy and the attenuating effects of DOXYL-stearates on TOCSY crosspeak intensities of micelle-associated S4 indicate that the central alpha-helical portion of this peptide is oriented approximately parallel to the membrane surface. Simulated annealing and molecular dynamics calculations of the peptide in a biphasic tetrachloromethane-water environment indicate that the peptide alpha-helix extends over approximately 12 residues. A less regular structure further toward the C-terminus allows for the hydrophobic residues of this part of the peptide to be positioned in the tetrachloromethane environment. The implications for possible pore-forming mechanisms are discussed.  相似文献   

4.
5.
《FEBS letters》1993,320(3):261-266
Nicotinic cholinergic receptors are membrane proteins composed of five subunits organized around a central aqueous pore. A pentameric channel protein, T5M2δ, that emulates the presumed pore-forming structure of this receptor was generated by assembling five helix-forming peptide modules at the lysine ε-amino groups of the 11-residue template [K*AK*KK*PGK*EK*G], where * indicates attachment sites. Helical modules represent the sequence of the M2 segment of the Torpedo californica acetylcholine receptor (AChR) δ subunit; M2 segments are considered involved in pore-lining. Purified T5M2δ migrates in SDS-PAGE with an apparent Mr˜14,000, concordant with a protein of 126 residues. T5M2δ forms cation-selective channels when reconstituted in planar lipid bilayers. The single channel conductance in symmetric 0.5 M K.C1 is 40 pS. This value approximates the 45 pS single channel conductance characteristic of authentic purified Torpedo AChR, recorded under otherwise identical conditions. These results, together with conformational energy calculations, support the notion that a bundle of five amphipathic a-helices is a plausible structural motif underlying the inner bundle that forms the pore of the pentameric AChR channel.  相似文献   

6.
The propagation of action potentials during neuronal signal transduction in phospholipid membranes is mediated by ion channels, a diverse group of membrane proteins. The S4-S5 linker peptide (S4-S5), that connects the S4 and S5 transmembrane segments of voltage-gated potassium channels is an important region of the Shaker ion-channel protein. Despite its importance, very little is known about its structure. Here we provide evidence for an amphipathic alpha-helical conformation of a synthetic S4-S5 peptide of the voltage-gated Drosophila melanogaster Shaker potassium channel in water/trifluoroethanol and in aqueous phospholipid micelles. The three-dimensional solution structures of the S4-S5 peptide were obtained by high-resolution nuclear magnetic resonance spectroscopy and distance-geometry/simulated-annealing calculations. The detailed structural features are discussed with respect to model studies and available mutagenesis data on the mechanism and selectivity of the potassium channel.  相似文献   

7.
L Li  M Schuchard  A Palma  L Pradier  M G McNamee 《Biochemistry》1990,29(23):5428-5436
Previous chemical modification studies of the acetylcholine receptor [Yee, A.S., Corey, D.E., & McNamee, M.G. (1986) Biochemistry 25, 2110-2119] were extended by using fluorescent N-pyrenylmaleimide to alkylate purified Torpedo californica nicotinic acetylcholine receptor (AChR). Peptide sequencing of the tryptic fragments of the labeled AChR gamma subunit identified cysteines 416, 420, and 451 as the modified residues. The functional role of Cys-451 in the M4 transmembrane domain of the AChR gamma subunit was further investigated by studying the functional consequences of the site-specific mutation of this cysteine to either serine or tryptophan by using AChR mRNAs injected into Xenopus laevis oocytes. Both mutants displayed about 50% reduction in the normalized channel activity of the receptor measured as the ACh-induced conductance per femtomole of surface alpha-bungarotoxin binding sites. However, the mutations did not change other AChR functional properties such as agonist binding ability, the slow phase of desensitization, and blockade by competitive and noncompetitive antagonists. The significant reduction in AChR ion channel activity associated with the above point mutations, especially the simple change of the -SH group on Cys-451 to the -OH group, suggests that this thiol group in the M4 helix of gamma subunit may play an important role in AChR ion channel function. Previous site-directed mutations of the Cys-416 and -420 residues showed a decreased response when both of these residues were changed to phenylalanine, but not when they were changed to serine [Pradier, L., Yee, A.S., & McNamee, M.G. (1989) Biochemistry 28, 6562-6571].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A structural and dynamic model for the nicotinic acetylcholine receptor   总被引:1,自引:0,他引:1  
Folding of the five polypeptide subunits (alpha 2 beta gamma delta) of the nicotinic acetylcholine receptor (AChR) into a functional structural model is described. The principles used to arrange the sequences into a structure include: (1) hydrophobicity----membrane-crossing segments; (2) amphipathic character----ion-carrying segments (ion channel with single group rotations); (3) molecular shape (elongated, pentagonal cylinder)----folding dimensions of exobilayer portion; (4) choice of acetylcholine binding sites----specific folding of exobilayer segments; (5) location of reducible disulfides (near agonist binding site)----additional specification of exobilayer arrangement; (6) genetic homology----consistency of functional group choices; (7) noncompetitive antagonist labeling----arrangement of bilayer helices. The AChR model is divided into three parts: (a) exobilayer consisting of 11 antiparallel beta-strands from each subunit; (b) bilayer consisting of four hydrophobic and one amphiphilic alpha-helix from each subunit; (c) cytoplasmic consisting of one (folded) loop from each subunit. The exobilayer strands can form a closed 'flower' (the 'resting state') which is opened ('activated') by agonists bound perpendicular to the strands. Rearrangement of the agonists to a strand-parallel position and partial closing of the 'flower' leads to a desensitized receptor. The actions of acetylcholine and succinoyl and suberoyl bis-cholines are clarified by the model. The opening and closing of the exobilayer 'flower' controls access to the ion channel which is composed of the five amphiphilic bilayer helices. A molecular mechanism for ion flow in the channel is given. Openings interrupted by short duration closings (50 microseconds) depend upon channel group motions. The unusual photolabeling of intrabilayer serines in alpha, beta and delta subunits but not in gamma subunits near the binding site for non-competitive antagonists is explained along with a mechanism for the action of these antagonists such as phencyclidine. The unusual alpha 192Cys-193Cys disulfide may have a special peptide arrangement, such as a cis-peptide bond to a following proline (G.A. Petsko and E.M. Kosower, unpublished results). The position of phosphorylatable sites and proline-rich segments are noted for the cytoplasmic loops. The dynamic behavior of the AChR channel and many different experimental results can be interpreted in terms of the model. An example is the lowering of ionic conductivity on substitution of bovine for Torpedo delta M2 segment. The model represents a useful construct for the design of experiments on AChR.  相似文献   

9.
Synthetic peptides patterned after the predicted transmembrane sequence of botulinum toxin A were used as tools to identify an ion channel-forming motif. A peptide denoted BoTxATM, with the sequence GAVILLEFIPEIAI PVLGTFALV, forms cation-selective channels when reconstituted in planar lipid bilayers. As predicted, the self-assembled conductive oligomers express heterogeneous single-channel conductances. The most frequent openings exhibit single-channel conductance of 12 and 7 pS in 0.5 M NaCl, and 29 and 9 pS in 0.5 M KCl. In contrast, ion channels are not formed by a peptide of the same amino acid composition as BoTxATM with a scrambled sequence. Conformational energy calculations show that a bundle of four amphipathic alpha-helices is a plausible structural motif underlying the measured pore properties. These studies suggest that the identified module may play a functional role in the ion channel-forming activity of intact botulinum toxin A.  相似文献   

10.
Previous amino acid substitutions at the M4 domain of the Torpedo californica and mouse acetylcholine receptor suggested that the location of the substitution relative to the membrane-lipid interface and perhaps to the ion pore can be critical to the channel gating mechanism [Lasalde, J. A., Tamamizu, S., Butler, D. H., Vibat, C. R. T., Hung, B., and McNamee, M. G. (1996) Biochemistry 35, 14139-14148; Ortiz-Miranda, S. I., Lasalde, J. A., Pappone, P. A., and McNamee, M. G. (1997) J. Membr. Biol. 158, 17-30; Tamamizu, S., Lee, Y. H., Hung, B., McNamee, M. G., and Lasalde-Dominicci, J. A. (1999) J. Membr. Biol. 170, 157-164]. In this study, we introduce tryptophan substitutions at 12 positions (C412W, M415W, L416W, I417W, C418W, I419W, I420W, G421W, T422W, V423W, S424W, and V425W) along this postulated lipid-exposed segment M4 so that we can examine functional consequences on channel gating. The expression levels of mutants C412W, G421W, S424W, and V425W were almost the same as that of the wild type, whereas other mutants (M415W, L416W, C418W, I419W, I420W, T422W, and V423W) had relatively lower expression levels compared to that of the wild type as measured by iodinated alpha-bungarotoxin binding ([(125)I]-alpha-BgTx). Two positions (L416W and I419W) had less than 20% of the wild type expression level. I417W gave no detectable [(125)I]BgTx binding on the surface of oocyte, suggesting that this position might be involved in the AChR assembly, oligomerization, or transport to the cell membrane. The alphaV425W mutant exhibited a significant increase in the open channel probability with a moderate increase in the macroscopic response at higher ACh concentrations very likely due to channel block. The periodicity for the alteration of receptor assembly and ion channel function seems to favor a potential alpha-helical structure. Mutants that have lower levels of expression are clustered on one side of the postulated alpha-helical structure. Mutations that display normal expression and functional activity have been shown previously to face the membrane lipids by independent labeling studies. The functional analysis of these mutations will be presented and discussed in terms of possible structural models.  相似文献   

11.
Five amphipathic peptides with antimicrobial, hemolytic, and insecticidal activity were isolated from the crude venom of the wolf spider Oxyopes kitabensis. The peptides, named oxyopinins, are the largest linear cationic amphipathic peptides from the venom of a spider that have been chemically characterized at present. According to their primary structure Oxyopinin 1 is composed of 48 amino acid residues showing extended sequence similarity to the ant insecticidal peptide ponericinL2 and to the frog antimicrobial peptide dermaseptin. Oxyopinins 2a, 2b, 2c, and 2d have highly similar sequences. At least 27 out of 37 amino acid residues are conserved. They also show a segment of sequence similar to ponericinL2. Circular dichroism analyses showed that the secondary structure of the five peptides is essentially alpha-helical. Oxyopinins showed disrupting activities toward both biological membranes and artificial vesicles, particularly to those rich in phosphatidylcholine. Electrophysiological recordings performed on insect cells (Sf9) showed that the oxyopinins produce a drastic reduction of cell membrane resistance by opening non-selective ion channels. Additionally, a new paralytic neurotoxin named Oxytoxin 1 was purified from the same spider venom. It contains 69 amino acid residue cross-linked by five disulfide bridges. Application of mixtures containing oxyopinins and Oxytoxin 1 to insect larvae showed a potentiation phenomenon, by which an increase lethality effect is observed. These results suggest that the linear amphipathic peptides in spider venoms and neuropeptides cooperate to capture insects efficiently.  相似文献   

12.
Structure and mechanism of action of the antimicrobial peptide piscidin   总被引:1,自引:0,他引:1  
Campagna S  Saint N  Molle G  Aumelas A 《Biochemistry》2007,46(7):1771-1778
Piscidin, an antibacterial peptide isolated from the mast cells of striped bass, has potent antimicrobial activity against a broad spectrum of pathogens in vitro. We investigated the mechanism of action of this 22-residue cationic peptide by carrying out structural studies and electrophysiological experiments in lipid bilayers. Circular dichroism experiments showed that piscidin was unstructured in water but had a high alpha-helix content in dodecylphosphocholine (DPC) micelles. 1H NMR data in water and TFE confirmed these results and demonstrated that the segment of residues 8-17 adopted an alpha-helical structure in a micellar environment. This molecule has a marked amphipathic character, due to well-defined hydrophobic and hydrophilic sectors. This structure is similar to those determined for other cationic peptides involved in permeabilization of the bacterial membrane. Multichannel experiments with piscidin incorporated into azolectin planar bilayers gave reproducible I-V curves at various peptide concentrations and unambiguously showed that this peptide permeabilized the membrane. This pore forming activity was confirmed by single-channel experiments, with well-defined ion channels obtained at different voltages. The characteristics of the ion channels (voltage dependence, only one or two states of conductance) clearly suggest that piscidin is more likely to permeabilize the membrane by toroidal pore formation rather than via the "barrel-stave" mechanism.  相似文献   

13.
The primary amphipathic peptide Ac-Met-Gly-Leu-Gly-Leu-Trp-Leu-Leu-Val-Leu10-Ala-Ala-Ala-Leu-Gln-Gly-Ala-Lys-Lys-Lys20-Arg-Lys-Val-NH-CH2-CH2-SH called SPM was able to induce formation of ion channels into planar lipid bilayers with main conductance values of 75 and 950 pS in 1 M KCl. The 75 pS value can be attributed to an aggregate composed of five monomers since the corresponding five-unit bundle (5-SPM) also presented a 70 pS channels under the same conditions. The upper 950 pS level would be generated by a hexameric aggregate. Ion channels induced by both SPM and its pentameric bundle are slightly cation selective but not voltage-dependent. The structural studies showed that the SPM and 5-SPM possess mainly an alpha-helical structure (approximately 40%) and are strongly embedded in the bilayer. This behaviour and the strong hydrophobic interactions occurring between helices in the bundle induce a strong stabilization of 5-SPM in the bilayer and would be responsible for the stepwise current fluctuations observed during the incorporation of 5-SPM into the membrane.  相似文献   

14.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

15.
Previous results indicate that the external glycoprotein gp51 of bovine leukemia virus plays an important role in the process of cell fusion induced by bovine leukemia virus (Bruck, C., Mathot, S., Portetelle, D., Berte, C., Franssen, J. D., Herion, P., and Burny, A. (1982) Virology 122, 342-352; Vonèche, V., Portetelle., D., Kettmann, R., Willems, L., Limbach, K., Paoletti, E., Ruysschaert, J. M., Burny, A., and Brasseur, R. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 3810-3814) and suggest that a region encompassing residues 23 and 25 of gp51 is involved in this process (Portetelle, D., Couez, D., Bruck, C., Kettmann, R., Mammerickx, M., Van der Maaten, M., Brasseur, R., and Burny, A. (1989) Virology 169, 27-33; Mamoun, R., Morisson, M., Rebeyrotte, N., Busetta, B., Couez, D., Kettmann, R., Hospital, M., and Guillemain, B. (1990) J. Virol. 64, 4180-4188). X-ray diffraction studies performed on envelope glycoproteins of influenza virus indicate that the NH2-terminal part of the external glycoprotein lies very close to the fusion peptide. The same overall structure seems to exist in human immunodeficiency virus as suggested by site-directed mutagenesis followed by syncytia induction assays. Our theoretical studies indicate that a segment expanding between residues 19 and 27 of gp51 probably adopts an amphipathic beta-strand structure. We hypothesize that the amphipathic 19-27 structure of gp51 plays an important role in the process of membrane fusion by interacting with the fusion peptide or with another region of gp30. Mutational analysis disrupting the amphipathy of the 19-27 region strongly altered the fusogenic capacity of the gp51-gp30 complex.  相似文献   

16.
An alpha-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2'-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2'-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times.  相似文献   

17.
Model class A amphipathic helical peptides mimic several properties of apolipoprotein A-I (apoA-I), the major protein component of high density lipoproteins. Previously, we reported the NMR structures of Ac-18A-NH(2) (renamed as 2F because of two phenylalanines), the base-line model class A amphipathic helical peptide in the presence of lipid ( Mishra, V. K., Anantharamaiah, G. M., Segrest, J. P., Palgunachari, M. N., Chaddha, M., Simon Sham, S. W., and Krishna, N. R. (2006) J Biol. Chem. 281, 6511-6519 ). Substitution of two Leu residues on the nonpolar face (Leu(3) and Leu(14)) with Phe residues produced the peptide 4F (so named because of four phenylalanines), which has been extensively studied for its anti-inflammatory and antiatherogenic properties. Like 2F, 4F also forms discoidal nascent high density lipoprotein-like particles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Since subtle structural changes in the peptide-lipid complexes have been shown to be responsible for their antiatherogenic properties, we undertook high resolution NMR studies to deduce detailed structure of 4F in 4F.DMPC discs. Like 2F, 4F adopts a well defined amphipathic alpha-helical structure in association with the lipid at a 1:1 peptide/lipid weight ratio. Nuclear Overhauser effect (NOE) spectroscopy revealed a number of intermolecular close contacts between the aromatic residues in the hydrophobic face of the helix and the lipid acyl chain protons. Similar to 2F, the pattern of observed peptide-lipid NOEs is consistent with a parallel orientation of the amphipathic alpha helix, with respect to the plane of the lipid bilayer, on the edge of the disc (the belt model). However, in contrast to 2F in 2F.DMPC, 4F in the 4F.DMPC complex is located closer to the lipid headgroup as evidenced by a number of NOEs between 4F and DMPC headgroup protons. These NOEs are absent in the 2F.DMPC complex. In addition, the conformation of the DMPC sn-3 chain in 4F.DMPC complex is different than in the 2F.DMPC complex as evidenced by the NOE between lipid 2.CH and betaCH(2) protons in 4F.DMPC, but not in 2F.DMPC, complex. Based on the results of this study, we infer that the antiatherogenic properties of 4F may result from its preferential interaction with lipid headgroups.  相似文献   

18.
The activation of cyclin-dependent kinase 5 (Cdk5) depends on the binding of its neuronal specific activator Nck5a. The minimal activation domain of Nck5a is located in the region of amino acid residues 150 to 291 (Tang, D., Chun, A. C. S., Zhang, M., and Wang, J. H. (1997) J. Biol. Chem. 272, 12318-12327). In this work we show that a 29-residue peptide, denoted as the alphaN peptide, encompassing amino acid residues Gln145 to Asp173 of Nck5a is capable of binding Cdk5 to result in kinase inhibition. This peptide also inhibits an active phospho-Cdk2-cyclin A complex, with a similar potency. Direct competition experiments have shown that this inhibitory peptide does not compete with Nck5a or cyclin A for Cdk5 or Cdk2, respectively. Steady state kinetic analysis has indicated that the alphaN peptide acts as a non-competitive inhibitor of Cdk5. Nck5a complex with respect to the peptide substrate. To understand the molecular basis of kinase inhibition by the peptide, we determined the structure of the peptide in solution by circular dichroism and two-dimensional 1H NMR spectroscopy. The peptide adopts an amphipathic alpha-helical structure from residues Ser149 to Arg162 which can be further stabilized by the helix-stabilizing solvent trifluoroethanol. The hydrophobic face of the helix is likely to be the kinase binding surface.  相似文献   

19.
Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface simulation corresponded to a loosely bound alamethicin molecule that interacted with lipid headgroups but did not penetrate the hydrophobic core of the bilayer. Both simulations started with the peptide molecule in an alpha-helical conformation and lasted 2 ns. In water, the helix started to unfold after approximately 300 ps and by the end of the simulation only the N-terminal region of the peptide remained alpha-helical and the molecule had collapsed into a more compact form. At the surface of the bilayer, loss of helicity was restricted to the C-terminal third of the molecule and the rod-shaped structure of the peptide was retained. In the surface simulation about 10% of the peptide/water H-bonds were replaced by peptide/lipid H-bonds. These simulations suggest that some degree of stabilization of an amphipathic alpha-helix occurs at a bilayer surface even without interactions between hydrophobic side chains and the acyl chain core of the bilayer.  相似文献   

20.
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号