共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Beef heart cytochrome c oxidase has been reacted with [35S]diazobenzenesulfonate ([35S]DABS), [35S]-N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate ([35S]NAP-taurine), and two different radioactive arylazidophospholipids. The labeling of the seven different subunits of the enzyme with these protein modifying reagents has been examined. DABS, a water-soluble, lipid-insoluble reagent, reacted with subunits II, III, IV, V, and VII but labeled I or VI only poorly. The arylazidophospholipids, probes for the bilayer-intercalated portion of cytochrome c oxidase, labeled I, III, and VII heavily and II and IV lightly but did not react with V or VI. NAP-taurine labeled all of the subunits of cytochrome c oxidase. Evidence is presented that this latter reagent reacts with the enzyme from outside the bilayer, and the pattern of labeling with the different hydrophilic and hydrophobic labeling reagents is used to derive a model for the arrangement of subunits in cytochrome c oxidase. 相似文献
4.
Ribonuclease inhibitor (RI) is a protein that forms a very tight complex with ribonucleases (RNases) of the pancreatic type. RI contains 30 thiol groups, some of which are important for the enzyme-inhibitor interaction. To examine which thiols are affected by the binding of RNase, differential labeling experiments were performed. Reaction of porcine RI with the cysteine-specific labeling reagent 4-N,N-dimethylaminoazobenzene-4'-iodoacetamido-2'-sulfonic acid resulted in labeling of an average of 7.4 of the 30 cysteinyl residues. Binding of bovine pancreatic RNase A caused a 3.2-fold reduction in the extent of modification. Peptide mapping showed that in free RI, Cys-57, -371, and -404 were labeled to the greatest extent (yield, 0.4-0.6 mol/mol). RNase A did not protect Cys-57 against modification, whereas the labeling of Cys-371 and -404 was reduced by more than 90%. A second group of residues was labeled to a lesser extent in free RI (yield, 0.04-0.2 mol/mol). Within this group 11 residues were protected by RNase A by more than 90%, 2 were not affected at all, and 7 were protected between 10 and 90%. Seven cysteinyl residues in RI that were protected in the RI.RNase A complex were no longer protected in the RI.S-protein complex. These residues were mainly present in the N-terminal region of RI. However, when the S-peptide was included to yield the RI.RNase S complex, the same pattern of labeling was obtained as with the RI.RNase A complex. Addition of the S-peptide alone had no effect on the labeling. The implications of these observations with respect to RNase binding areas of RI are discussed in relation to the results obtained from the analysis of active RI molecules that contain deletions. 相似文献
5.
Photochemical labeling of bovine pancreatic ribonuclease A with 8-azidoadenosine 3',5'-bisphosphate 总被引:1,自引:0,他引:1
A simple method has been developed for the preparation of 5'-32P-labeled 8-azidoadenosine 3',5'-bisphosphate (p8N3Ap) for use in photoaffinity labeling studies. Irradiation of a complex between p8N3Ap and bovine pancreatic ribonuclease A (RNase A) with light of 300-350 nm led to the covalent attachment of the nucleotide to the enzyme. RNase A could also be labeled in the dark with prephotolyzed p8N3Ap. In either case, the nucleotide reacted with the same tryptic peptide, encompassing amino acids 67-85 of the protein. The site of labeling was determined to be either Thr-78 or Thr-82, both of which are close to or at the pyrimidine binding site of the enzyme. This result is consistent with recent nuclear magnetic resonance and X-ray studies which indicate that 8-substituted adenine nucleotides interact with the pyrimidine binding site of RNase A. 相似文献
6.
《Biochimica et Biophysica Acta (BBA)/General Subjects》1987,926(2):195-202
For tracer or analytical studies it is often useful to label proteins by direct iodination or by reacting them with an iodinated reagent. A simple iodination technique with hydrogen peroxide is described for use with either carrier-free or low-specific-activity iodine. The method introduces less oxidative damage to proteins than any other procedure tested, yet the efficiency of labeling approaches that offered by the chloramine T or Iodogen methods. The method has been applied to the facile and inexpensive preparation of the iodinated Bolton-Hunter reagent. This peroxide iodination procedure should be particularly useful for labeling proteins or peptides for structural investigations or for immunoassays. 相似文献
7.
P F Davison 《Biochimica et biophysica acta》1987,926(2):195-202
For tracer or analytical studies it is often useful to label proteins by direct iodination or by reacting them with an iodinated reagent. A simple iodination technique with hydrogen peroxide is described for use with either carrier-free or low-specific-activity iodine. The method introduces less oxidative damage to proteins than any other procedure tested, yet the efficiency of labeling approaches that offered by the chloramine T or Iodogen methods. The method has been applied to the facile and inexpensive preparation of the iodinated Bolton-Hunter reagent. This peroxide iodination procedure should be particularly useful for labeling proteins or peptides for structural investigations or for immunoassays. 相似文献
8.
Mollica V Borassi A Relini A Cavalleri O Bolognesi M Rolandi R Gliozzi A 《European biophysics journal : EBJ》2001,30(5):313-318
Tapping mode atomic force microscopy was employed to study the surface structure of different protein crystals in a liquid environment. The (101) face of hen egg-white lysozyme crystals and the (111) face of horse spleen ferritin crystals were studied. On the (101) face of lysozyme crystals we observed islands delimitated by micro-steps and elongated in the [010] direction. The elongation direction coincides with the preferential growth direction predicted by a growth model reported in the literature. The islands observed on the ferritin (111) face are also delimitated by micro-steps but have circular symmetry. Sectioning of the images allowed us to measure the step heights. The surface free energy was estimated from the growth step morphology. Molecular resolution was achieved for ferritin crystals, showing a hexagonal surface packing, as expected for the molecular lattice of a (111) face in a fcc crystal. 相似文献
9.
Fernández-Suárez M Baruah H Martínez-Hernández L Xie KT Baskin JM Bertozzi CR Ting AY 《Nature biotechnology》2007,25(12):1483-1487
Live cell imaging is a powerful method to study protein dynamics at the cell surface, but conventional imaging probes are bulky, or interfere with protein function, or dissociate from proteins after internalization. Here, we report technology for covalent, specific tagging of cellular proteins with chemical probes. Through rational design, we redirected a microbial lipoic acid ligase (LplA) to specifically attach an alkyl azide onto an engineered LplA acceptor peptide (LAP). The alkyl azide was then selectively derivatized with cyclo-octyne conjugates to various probes. We labeled LAP fusion proteins expressed in living mammalian cells with Cy3, Alexa Fluor 568 and biotin. We also combined LplA labeling with our previous biotin ligase labeling, to simultaneously image the dynamics of two different receptors, coexpressed in the same cell. Our methodology should provide general access to biochemical and imaging studies of cell surface proteins, using small fluorophores introduced via a short peptide tag. 相似文献
10.
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme. 相似文献
11.
A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis 总被引:10,自引:0,他引:10
Human angiogenin is a blood vessel inducing protein whose primary structure displays 33% identity to that of bovine pancreatic ribonuclease A (RNase A). Angiogenin catalyzes limited cleavage of 18S and 28S ribosomal RNA and is several orders of magnitude less potent than RNase A toward conventional substrates. A striking structural difference between angiogenin and RNase is the virtual absence of sequence similarity within the region of RNase that contains the Cys-65--Cys-72 disulfide bond. Indeed, angiogenin lacks this disulfide linkage. The present report describes the use of regional mutagenesis to generate a covalent angiogenin/RNase hybrid protein, ARH-I, where residues 58-70 of angiogenin have been replaced by the corresponding segment of RNase A (residues 59-73). The protein expressed in Escherichia coli readily folds at pH 8.5 to form the four expected disulfide bonds. The in vivo angiogenic potency of ARH-I is markedly diminished compared with that of angiogenin when examined using the chick chorioallantoic membrane assay. In contrast, its enzymatic activity is dramatically increased. With high molecular weight wheat germ RNA and tRNA, ARH-I is 660- and 300-fold more active than angiogenin, respectively, while with poly(uridylic acid), poly(cytidylic acid), cytidylyl(3'----5')adenosine (CpA), and uridylyl(3'----5')adenosine (UpA) activity is enhanced by about 200-fold. In addition, the specificity of ARH-I toward dinucleoside 3',5'-phosphates is qualitatively similar to RNase A; while angiogenin prefers cytidylyl(3'----5')guanosine (CpG) to UpA, both RNase and the hybrid prefer UpA to CpG. ARH-I also displays greater than 10-fold enhanced activity toward rRNA in intact ribosomes, while abolishing the capacity of the ribosome to support cell-free protein synthesis. The enhanced enzymatic properties of ARH-I parallel a 2-fold increase in chemical reactivity of active-site lysine and histidine residues based on rates of chemical modification. The data indicate that introduction of a region of RNase A containing the Cys-65--Cys-72 disulfide bond into angiogenin dramatically increases RNase-like enzymatic activity while reducing its angiogenicity. 相似文献
12.
Ribonuclease A (RNase A) and the ribonuclease inhibitor protein (RI) form one of the tightest known protein-protein complexes. RNase A variants and homologues, such as G88R RNase A, that retain ribonucleolytic activity in the presence of RI are toxic to cancer cells. Herein, a new and facile assay is described for measuring the equilibrium dissociation constant (K(d)) and dissociation rate constant (k(d)) for complexes of RI and RNase A. This assay is based on the decrease in fluorescence intensity that occurs when a fluorescein-labeled RNase A binds to RI. To allow time for equilibration, the assay is most readily applied to those complexes with K(d) values in the nanomolar range or higher. Using this assay, the value of K(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be 0.55 +/- 0.03 nM. In addition, the value of K(d) was determined for the complex of RI with unlabeled G88R RNase A to be 0.57 +/- 0.05 nM by using a competition assay with fluorescein-labeled G88R RNase A. Finally, the value of k(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be (7.5 +/- 0.4) x 10(-3) s(-1) by monitoring the increase in fluorescence intensity upon dissociation. This assay can be used to characterize complexes of RI with a wide variety of RNase A variants and homologues, including those with cytotoxic activity. 相似文献
13.
《International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology》1989,16(1):11-16
A method is described for labeling proteins with 99mTc, the radionuclide of choice in diagnostic nuclear medicine. Labeling efficiency, stability of label attachment and retained biological behaviour, e.g. immunoreactivity of monoclonal antibodies after radiolabeling are demonstrated. An application of a 99mTc-labeled anti-fibrin monoclonal antibody in radioimmunoimaging of thrombi is presented. 相似文献
14.
The effect of the folded conformation of a protein on the rate of deamidation of a specific asparaginyl residue has been determined. Native and unfolded ribonuclease A (RNase A) could be compared under identical conditions, because stable unfolded protein was generated by breaking irreversibly the protein disulfide bonds. Deamidation of the labile Asn-67 residue of RNase A was followed electrophoretically and chromatographically. At 80 degrees C, similar rates of deamidation were observed for the disulfide-bonded form, which is thermally unfolded, and the reduced form. At 37 degrees C and pH 8, however, the rate of deamidation of native RNase A was negligible, and was more than 30-fold slower than that of reduced, unfolded RNase A. This demonstrates that the Asn-67 residue is located in a local conformation in the native protein that greatly inhibits deamidation. This conformation is the beta-turn of residues 66-68. 相似文献
15.
16.
Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. 总被引:6,自引:0,他引:6
D S Wilbur 《Bioconjugate chemistry》1992,3(6):433-470
Direct labeling of proteins with radionuclides of iodine will continue to be the method of choice to answer questions addressed in many future studies. However, it seems likely that a increasing number of applications of radiohalogenated proteins will require, or benefit from, conjugate labeling. While many radiohalogen conjugates have been studied, a large proportion of them have only undergone preliminary studies to date, leaving a question of their overall utility. Phenolic conjugates give good radioiodination labeling yields, but mixtures of radiohalogenated products and problems with in vivo stability can be expected. This fact, along with the fact that phenolic compounds do not have a general application to radiohalogens, makes them less attractive than other alternatives. Radiohalogen labeling through the use of organometallic intermediates has proven to be facile, resulting in high yields of high specific activity labeled small-molecule conjugates. Although the choice of which organometallic intermediate to use may depend somewhat on the radionuclide employed, arylstannanes appear to have the most general applicability. Fluorine-18 labeling of small-molecule conjugates has been best accomplished by ipso aromatic nucleophilic substitution (exchange) reactions. Radiohalogenated small molecules have been prepared which can be conjugated with specific functional groups (e.g. amines, sulfhydryl groups, and carbohydrates) or conjugated nonspecifically with groups in the proximity of the conjugate when it is photolyzed. On the basis of previous studies, good conjugation yields (i.e. 60-90%) can be expected for reactions with specific groups, whereas low yields (i.e. 1-5%) can be expected for conjugations with reactive nitrenes and carbenes. However, recent developments in the chemistry of conjugates that produce nitrenes and carbenes will likely improve the radiolabeling yields. There have been too few comparative studies to readily assess which is the best approach to take when beginning a study involving radiohalogenation of a protein or peptide. However, it is clear that radiohalogenated conjugates of proteins can offer an advantage over direct labeling in that conjugates may be designed which provide some control over in vivo stability and secondary distribution of metabolites. Conjugates can be prepared which are designed to utilize in vivo biochemical processes to release a radiohalogenated small molecule from a tissue (i.e. kidney or liver) or retain the radioactivity at the target tissue (e.g. tumor). Aside from the designing of conjugates with linking molecules for desired biological effects, the ultimate future goal for the radiolabeling chemical should be to prepare protein conjugates which can be radiohalogenated in a single one-step procedure. 相似文献
17.
An evidence for the equilibrium unfolding intermediates of ribonuclease A by tritium labeling method
Volynskaya AV Kasumov EA Goldanskii VI 《International journal of biological macromolecules》2006,39(4-5):256-264
A formation of a molten globule in the unfolding of ribonuclease A could be considered as an evidence supporting a hypothesis on the existence of such intermediates on the pathway of a protein folding. Using a novel technique (tritium labeling method) we have showed that the ribonuclease A equilibrium unfolding in urea and guanidinium chloride (GuCl) solutions proceeds through a formation of intermediates whose properties (compactness, retention of the larger part hydrophobic core, secondary structure, and native-like folding pattern) correspond to the fundamental characteristics of the molten globule state. The both intermediates are the “wet” molten globules (the globule interior contains the water molecules). The results reveal the noticeable distinctions in intermediates structure, first of all, in the extent of their compactness. The urea intermediate is less compact than that in GuCl. It is shown that the refolding of the protein denatured by GuCl results in the formation of the intermediate which enzyme activity is virtually the same as the activity of the native protein. 相似文献
18.
R W Henkens A D Gerber M R Cooper W R Herzog 《The Journal of biological chemistry》1980,255(15):7075-7078
The guanidinium chloride-unfolded state of ribonuclease A was found to be an equilibrium mixture of slow- and fast-refolding forms of the protein chain, as has been suggested. Both forms appear to have the same spectroscopic observables as judged by the relative changes in fluorescence emission and polarization. The equilibrium between them is thermally dependent, with deltaHapp equal to -1.4 kcal/mol. The activation energy Ea is equal to 18 kcal/mol. These findings are consistent with the proposal that cis-trans isomerism of peptide bonds that are NH2-terminal to proline residues is responsible for the slow phase of RNase A refolding. However, the actual dependence of the magnitude of the slow reaction on initial, prefolding temperature cannot be explained by a model in which the proline configurations of the fast refolding form must be identical to those of the native protein, as has been suggested. Instead, the data reveal that, although the native structure of RNase A contains two cis prolines, cis isomers need not be present in the fast-refolding form in order for folding to occur. 相似文献
19.
Richard Tzong-Han Tsai Wen-Chi Chou Ying-Shan Su Yu-Chun Lin Cheng-Lung Sung Hong-Jie Dai Irene Tzu-Hsuan Yeh Wei Ku Ting-Yi Sung Wen-Lian Hsu 《BMC bioinformatics》2007,8(1):325