首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flowering response of thin layers excised from branch internodes of Nicotiana tabacum cv. Maryland Catterton (quantitative short-day plant for induction) was studied under three photoperiodic treatments. The explants were excised from inflorescences bearing flowers only, flowers and green fruits, or from infructescences with green fruits only. The aim of the study was to investigate the post-inductive photoperiodic effects on in vitro flower bud formation in a quantitative short-day tobacco and the relation with infructescence development. Short days quantitatively enhanced the flower bud regeneration capacities of explants in all stages of development, both as number of explants induced to produce flowers and as mean number of flowers per explant. There was no significant difference in flower bud formation on explants of the first two stages, which produced much more flowers than those of the third stage. Observations in planta showed that, during the 20 days separating the second stage from the first stage, there was no significant difference in the number of floral buds and flowers present on the inflorescence; however, the branch internodes lengthened, as did the floral buds and flowers. During the 10 days leading to the third stage, the number of capsules did not change significantly, but a high rate of floral abscission occurred. The present results show that in Nicotiana tabacum cv. Maryland Catterton short day quantitatively controls not only the inductive step of the flowering process, but also affects the capacity to regenerate flower buds during the late post-inductive phases. The responsiveness to the photoperiodic signal decreases only when the plant exhibits only fruits.  相似文献   

2.
The response in vitro of thin cell layers, excised from different stem regions of Nicotiana tabacum cv. Maryland Mammoth plants at various developmental stages, was studied under different photoperiodic treatments. The aim was to determine at which stage of plant development, and in which region of the stem, the absolute short-day requirement, indispensable for the induction of the flowering process in this genotype, becomes quantitative and whether it remains short-day. The explants were cultured on a medium suitable for flower neoformation, and were exposed for 30 days to the following treatments: continuous darkness, 8 h light/16 h dark per day, 16 h light/8 h dark per day, and continuous light. The first flowers on explants were observed from plants that were still in the vegetative state, but whose apex showed an accelerated production of axillary vegetative buds, as observed histologically. These explants were excised from the first 10 internodes below the first node with a leaf ≥ 5 cm in length (apical site), and produced flowers only under short-day treatment. When the apical dome initiated the organization of the terminal flower, the apical site explants developed flowers under both short-day and long-day treatments. At the same stage, explants from the 15th to the 20th internode below the first leaf ≥ 5 cm in length also formed flowers, but only under short-day. When the plant showed a complete inflorescence, flowers were also present on explants from the most basal stem internodes and from the inflorescence branches. At this stage, flower neoformation occurred under all treatments; however, under short-day the number of explants showing flowers not associated with vegetative buds on the same sample greatly exceeded that observed under other treatments, as did the mean number of flowers per explant (except the basal regions). In conclusion, in the post-inductive phases of the flowering process, the photoperiodic requirement of this genotype is always short-day. The superficial tissues of the stem require either absolute or quantitative short-day treatment, depending on their position on the stem and the stage of evolution of the flowering process in the terminal apex.  相似文献   

3.
Flower bud formation was studied in thin-layer tissue expiants of epidermis plus subepidermal cortex from the inflorescence ramifications ofNicotiana tabacum cv. Samsun. With appropriate hormone concentrations of BA and NAA expiants from flowerv and fruitbearing stalks regenerate flower buds only, while those from the internodes of the inflorescence ramifications produce generative as well as vegetative buds. In both types of expiants the number of buds formed depend mainly on the hormone concentrations but, in addition, the age of stalks and internodes from which expiants are taken also affects bud formation. Both ABA and JA inhibit flower bud formation in expiants of flower stalks. JA was shown to particularly inhibit bud initiation.  相似文献   

4.
The concentrations of three classes of polyamines, trichloroacetic acid-soluble (free), TCA-soluble conjugated (to small molecules) and TCA-insoluble conjugated (to macromolecules), was examined during de novo floral and vegetative bud formation in thin cell layers of Nicotiana tabacum L. cv. Samsun. Explants (consisting of 5–6 layers of epidermal, subepidermal and parenchyma cells) were excised either from floral pedicels or from stem internodes at the unripe fruit stage and cultured on the same medium. In the former, the first de novo formed flower buds appeared on day 8 of culture, while in the latter the first vegetative domes appeared on day 10. In both cases the number of floral and vegetative buds increased up to day 12 and 15, respectively. Changes in dry weight were determined throughout the culture period. Free and conjugated putrescine titer increased 5–60 times in both types of culture and in the three classes of polyamines examined; spermidine content also increased, while spermine, when present, did not show significant changes. TCA-soluble conjugated polyamines were most abundant, being about 2-fold the TCA-insoluble conjugated ones and 10-fold the free ones. The major increment in putrescine and spermidine content occurred in stem internode explants developing vegetative buds. In pedicel explants the maximum putrescine level was reached before or on day 8 in culture (emergence of the first flower buds with calyx initials), while in stem internode explants the maximum level was reached on day 12, at the emergence of the first vegetative buds with leaf primordia. While spermidine prevailed on day 0, putrescine was the most abundant polyamine during both differentiation processes. The putrescine content rapidly increased immediately after the onset of culture. Thus conjugated polyamines, especially putrescine, and not only the free ones, seem to be involved in both the reproductive and vegetative phases of tobacco growth and development.  相似文献   

5.
烟草花序苞叶的离体花芽分化   总被引:6,自引:0,他引:6  
  相似文献   

6.
The developmental fates of shoots regenerated in culture and in situ by stem tissues of Nicotiana tabacum cv. Wisconsin 38 from different positions along the main axes of plants at different ages have been characterized. It was expected that explants from vegetative plants would not have the capacity to produce floral shoots. Contrary to the expected result, a small percentage (about 0.2%) of the shoots formed from cultured stem explants taken from young, vegetative plants were floral, i.e., produced a small number of nodes and then a flower. A larger percentage (about 2%) of the shoots formed by explants from the same region of plants which had flowered were floral. The largest percentage (76%) of floral shoots arose from explants taken from the inflorescence. Internode cells which were stimulated to divide and undergo organogenesis in situ after decapitation of the plant also produced few-noded, floral shoots with apical internode tissues producing many such floral shoots and basal internode tissues producing few such floral shoots. These results indicate that the capacity to form a flower is a visible expression of a cryptic developmental state which is quantitatively but not qualitatively controlled in time and space.  相似文献   

7.
The genus Nicotiana contains species and varieties that respond differently to photoperiod for flowering time control as day-neutral, short-day and long-day plants. In classical photoperiodism studies, these varieties have been widely used to analyse the physiological nature for floral induction by day length. Since key regulators for flowering time control by day length have been identified in Arabidopsis thaliana by molecular genetic studies, it was intriguing to analyse how closely related plants in the Nicotiana genus with opposite photoperiodic requirements respond to certain flowering time regulators. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are two MADS box genes that are involved in the regulation of flowering time in Arabidopsis. SOC1 is a central flowering time pathway integrator, whereas the exact role of FUL for floral induction has not been established yet. The putative Nicotiana orthologs of SOC1 and FUL, NtSOC1 and NtFUL, were studied in day-neutral tobacco Nicotiana tabacum cv Hicks, in short-day tobacco N. tabacum cv Hicks Maryland Mammoth (MM) and long-day N. sylvestris plants. Both genes were similarly expressed under short- and long-day conditions in day-neutral and short-day tobaccos, but showed a different expression pattern in N. sylvestris. Overexpression of NtSOC1 and NtFUL caused flowering either in strict short-day (NtSOC1) or long-day (NtFUL) Nicotiana varieties under non-inductive photoperiods, indicating that these genes might be limiting for floral induction under non-inductive conditions in different Nicotiana varieties.  相似文献   

8.
Thin cell layers excised from tobacco ( Nicotiana tabacum L. cv. Samsun) stem internodes, with an appropriate exogenous hormonal balance, were able to form a greater number of roots, and in a larger percentage of the explants (93%) than when they were excised from pedicels (40%). The developmental sequence of root formation and explant growth were followed by histological analysis. Free and bound [trichloroacetic acid (TCA)-soluble and -insoluble] putrescine and spermidine increased in the explants, particularly when root meristemoids appeared. These meristemoids originated in the superficial (day 6 in culture) or deep (days 10–11) layers and inside the newly formed callus (day 25). At those times, TCA-soluble and, to a lesser extent, TCA-insoluble bound putrescine predominated over the other polyamines. Spermine was always present in trace amounts. Polyamines decreased again when root and callus formation was completed (day 30). The involvement of these three classes of polyamines (free, TCA-soluble and -insoluble) in morphogenic processes is discussed.  相似文献   

9.
Bulbs, corms and other subterranean storage organs are commonly used as explant source material for the establishment of geophytes in vitro. The inflorescence stalk was found to be a good alternative source of explants to overcome explant contamination originating from underground storage organs. Inflorescence explants of Allium, Dichelostemma, Eucrosia, Gladiolus, Haemanthus, Hyacinthus, Narcissus, Nerine and Ornithogalum were used to establish cultures in vitro. The regeneration potential of the inflorescence was compared with regeneration from bulb twin scales or from apical buds isolated from corms. Gladiolus (Iridaceae) explants isolated from the floral stem just below the expanding florets, still enclosed in the bracts, were highly regenerative in the presence of naphthalene acetic acid (NAA) and kinetin. In the presence of 2,4-dichlorophenoxyacetic acid and benzyl aminopurine (BA) in the medium, explants isolated from the tissue at the junction between the peduncle and the pedicels of a young Nerine (Amaryllidaceae) inflorescence regenerated several buds. The scapes of young unemerged inflorescences taken from sprouting bulbs of Narcissus (Amaryllidaceae), following a 15 °C storage treatment, regenerated buds in the presence of NAA, BA, elevated phosphate and adenine sulfate in the medium. The number of buds regenerated depended on the location on the scape from which the explant was isolated, and on the duration of the 15°C treatment. In Allium (Alliaceae), capitulum tissue between the flower pedicels regenerated buds. Explants excised from the peduncle, as well as the pedicel-peduncle junction of Dichelostemma (Alliaceae), Ornithogalum, Hyacinthus (Hyacinthaceae) and Eucrosia (Amaryllidaceae) regenerated several buds in each type of explant. In the case of Haemanthus (Amaryllidaceae), pedicel-peduncle junction explants regenerated buds only when excised from inner whorl florets. Propagation protocols and the potential use of expediently isolated inflorescence explants for efficient micropropagation of geophytes are discussed. Received: 1 September 1999 / Revision received: 13 December 1999 / Accepted: 13 December 1999  相似文献   

10.
The in vitro development of flower buds was studied on tissue explants of epidermis and subepidermal cortex from the flower stalks of Nicotiana tabacum L. cv. Samsun. The number of flower buds formed depended mainly on cytokinin concentration. Auxin acted as a modifier in a complex way. In early development, NAA at 1 μ M decreased the number of buds initiated and delayed bud emergence. At a later stage, auxin promoted bud outgrowth at the same concentration. Optimal results were obtained when explants were first incubated at low auxin concentration for 3–5 days and subsequently transferred to an elevated auxin level. Physiological processes that lead to flower bud initiation start very soon after the onset of incubation. This was inferred from experiments whereby explants were first cultured at an inductive cytokinin concentration and then transferred to a non-inductive hormone level.  相似文献   

11.
Stem segments were excised from plants of Wisconsin 38 tobacco (Nicotiana tabacum L.) in three regions differing in their distance below the inflorescence. They were cultured in vitro in 8- or 16-hr days. After 8 weeks, floral and vegetative buds were counted, and extent of floral development was assessed. Kinetin at 10(-5)m inhibited formation and development of floral buds regardless of indoleacetic acid concentration. Supplied at this concentration with adequate auxin, kinetin stimulated vegetative bud formation and may have caused floral bud abortion. Indoleacetic acid (>/= 10(-6)m) inhibited vegetative and floral bud formation when supplied with low kinetin concentration (/= 10(-6)m), it inhibited floral bud formation and stimulated vegetative bud formation. More floral buds were formed in 16-hr days than in 8-hr days. Few formed on explants other than those derived from the region nearest the inflorescence regardless of other treatment.  相似文献   

12.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

13.
The evolution of floral display is thought to be constrained by trade‐offs between the size and number of flowers and inflorescences. We grew in the glasshouse 60 maternal families from each of two Brazilian populations of the annual herb, Eichhornia paniculata. We measured flower size, daily flower number, and total flower number per inflorescence, and two indices of module size, leaf area and age at flowering. We also assessed the size and number of inflorescences produced over 6 weeks. All floral traits exhibited significant heritable variation, some of which was due to genetic variation in module size. Genetic (maternal family) correlations between daily and total flower number did not differ from 1.0, indicating that display size (daily flower number) cannot evolve independently from total flower number per inflorescence. Genetic correlations between flower size and daily flower number ranged from negative to positive (r=–0.78 to +0.84), depending on population and inflorescence. Positive correlations occurred when variation in investment per inflorescence was high so that some families produced both larger and more flowers. These correlations became zero when we controlled for variation in module size. Families that flowered later produced fewer, larger inflorescences (r=–0.33, –0.85). These data support theoretical predictions regarding the combined effects of variation in resource acquisition and allocation on traits involved in trade‐offs, and they emphasize the hierarchical organization of floral displays. Our results imply that patterns of resource allocation among inflorescences influence evolutionary changes in flower size and number per inflorescence.  相似文献   

14.
Branch internodes of mature plants and stem internodes of seedlings of Fortunella hindsii flowered in vitro on half-strength MT (Murashige and Tucker 1969) basal medium supplemented with benzyladenine, adenine, 6---dimethylallylaminopurine and kinetin. The highest percentage of flowering was achieved with explants originating from branch internodes of flowering plants close to the apex on half-strength MT basal medium containing 5% sucrose and 0.01 mg 1–1 BA in light. Exposure to darkness for more than 3 weeks followed by re-exposure to light reduced flowering. Flowering required a 4-day exposure to BA, but shoot formation could be initiated even without exposure to BA. First branch internode segments on MT basal medium containing 5% sucrose were prolific in flower (85%) production. The sucrose treatment affected the flower bud size distribution. There were about 13 flower buds per culture in the largest size category (>5 mm).  相似文献   

15.

Background

Understanding and modelling early events of floral meristem patterning and floral development requires consideration of positional information regarding the organs surrounding the floral meristem, such as the flower-subtending bracts (FSBs) and floral prophylls (bracteoles). In common with models of regulation of floral patterning, the simplest models of phyllotaxy consider only unbranched uniaxial systems. Racemose inflorescences and thyrses offer a useful model system for investigating morphogenetic interactions between organs belonging to different axes.

Scope

This review considers (1) racemose inflorescences of early-divergent and lilioid monocots and their possible relationship with other inflorescence types, (2) hypotheses on the morphogenetic significance of phyllomes surrounding developing flowers, (3) patterns of FSB reduction and (4) vascular patterns in the primary inflorescence axis and lateral pedicels.

Conclusions

Racemose (partial) inflorescences represent the plesiomorphic condition in monocots. The presence or absence of a terminal flower or flower-like structure is labile among early-divergent monocots. In some Alismatales, a few-flowered racemose inflorescence can be entirely transformed into a terminal ‘flower’. The presence or absence and position of additional phyllomes on the lateral pedicels represent important taxonomic markers and key features in regulation of flower patterning. Racemose inflorescences with a single floral prophyll are closely related to thyrses. Floral patterning is either unidirectional or simultaneous in species that lack a floral prophyll or possess a single adaxial floral prophyll and usually spiral in the outer perianth whorl in species with a transversely oriented floral prophyll. Inhibitory fields of surrounding phyllomes are relevant but insufficient to explain these patterns; other important factors are meristem space economy and/or the inhibitory activity of the primary inflorescence axis. Two patterns of FSB reduction exist in basal monocots: (1) complete FSB suppression (cryptic flower-subtending bract) and (2) formation of a ‘hybrid’ organ by overlap of the developmental programmes of the FSB and the first abaxial organ formed on the floral pedicel. FSB reduction affects patterns of interaction between the conductive systems of the flower and the primary inflorescence axis.  相似文献   

16.
Three lines of evidence indicated a connectionbetween zearalenone (ZEN) and flower bud formationin thin cell layer (TCL) explants of Nicotianatabacum L. cv. Samsun. (1) There were two peaks inthe endogenous ZEN level during the formation offlower buds. (2) The specific inhibitor of ZENbiosynthesis, malathion (MAL), inhibited thebiosynthesis of endogenous ZEN and at the same timeflower bud neoformation. (3) Exogenous ZEN inducedflower bud neoformation.  相似文献   

17.
Caulogenesis and rhizogenesis were studied in cultured leafexplants of Nicotiana tabacum cv. Xanthi nc. using both lightand scanning electron microscopy. The timing of organ appearancewas also recorded. The patterns of development seen were comparedto each other and to that in explants grown on growth regulator-freemedium. Shoots first appeared after 12 d in culture and rootsafter 7 d. In caulogenesis nodules appear at the explant edgeand from these the shoots arise. The nodules are mainly derivedfrom palisade mesophyll cells, along with some spongy mesophylland bundle-sheath cells. The nodules form a continuous row alongthe edge of the explant and their initiation appears to be centredon veins. Shoots are produced indirectly. Roots are produceddirectly from bundle-sheath and vein parenchyma cells. Withoutplant growth regulators bundle-sheath cells still divide, althoughonly a few divisions were seen. Key words: Nicotiana tabacum, in vitro, caulogenesis, rhizogenesis  相似文献   

18.
Free amino acids and amines in leaf explants of Nicotiana tabacum cultivated in vitro on media inducing rhizogenesis or caulogenesis.
Foliar explants of Nicotiana tabacum cv. Xanthi n.c. were cultivated on three different media: (1) a basal medium without hormone, so that no differentiation occurred in the explants; (2) with auxin added; and (3) with auxin plus cytokinin added, where the additions (2) and (3) promote rhizogenesis and caulogenesis, respectively. The content of free amino acids and amines of the three kinds of explants were investigated. In the two media lacking cytokinin, the explants contained great amounts of five amino acids (asparagine, glutamine, proline, glutamic acid and histidine) and of one aromatic amine, tyramine. In the cytokinin containing medium, only two amines accumulated in the explants: one aliphatic polyamine (putrescine) and one aromatic amine (phenethylamine). The increase in amino acids began immediately on the first days of culture. It was related neither to a more active proteolysis nor to the breaking of the correlations from the mother plant. It was induced by the addition of nutritional elements into the medium. On the other hand, the accumulation of aromatic amines occurred after a few days of culture and was transitory. A decrease was observed after the first emergence of new organs. The relation between the accumulations of these aromatic compounds and formation of roots or shoots is discussed.  相似文献   

19.
The possible link between cytokinin and flowering was examine in tobacco. The degree of cytokinin autotrophy and the competence for cytokinin habitution were measured in callus derived from pith tissue of Nicotiana tabacum cvs. H425 an W38.Explants were taken from internodes at all positions up the stem in juvenile and mature plants. To test whether the competence of cells to form flowers was linked with crtokinin habituation, thin cell layer explants from comparable internodes were tested for their ability to form floral buds. Callus derived from the upper parts of plants showed cytokinin autotrophy whether or not the plants were flowering. Flower buds were formed only on thin cell layer explants from the upper part of plants which were already flowering. Cytokinin habituation and competence to flower are therefore not directly linked although cytokinin habituation could be a prerequisite for meristematic activity and for flowering. Pith from internodes in the lower half of mature pants formed callus which was cytokinin-dependent, although these same internodes in juvenile plants were cytokinin-autotrophic. The ability to form cytokinin-autotrophic callus was therefore greatest in the meristematic regions and was lost as the pith cells aged. Competence to habituate after 35 °C treatment was also shown by pith callus from a few internodes in the middle of the plant below those already forming cytokinin-autotropic callus.  相似文献   

20.
陆文樑 《Acta Botanica Sinica》2003,45(12):1453-1464
花叶千年木(Dracaena fragrans cv.massangeana Hort.)的各种单个器官(花被片、花芽、花序分枝、花序、成年态营养芽和幼态营养芽)在离体培养中被愈伤组织直接再生了。在这些单个器官的再生期间,一些规律性现象被观察到了。首先,单个再生器官种类的范围与分离外植体的器官在植物个体发育中被分化的时期有密切关系。从植株个体发育某个时期(时期A)分化的地上部分器官上分离的外植体能够分别再生下面这些地上部分器官:稍晚于时期A分化的器官,与时期A同期分化的器官和早于时期A分化的所有器官。其次,在这个范围内,究竟再生哪一种器官被再生取决于培养基中外源生长素的浓度。随着2,4-D浓度从0.005mg/L逐渐升高到0.5mg/L,单个再生器官的种类将按如下的次序变化:营养芽,花序,花序分枝,花芽,花被片。这些规律性现象将被用于诱导一个给定的被子植物地上部分器官的直接再生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号