共查询到20条相似文献,搜索用时 0 毫秒
1.
Somatic mutation and recombination test on wing cells of Drosophila melanogaster showed that the recombination frequency in the somatic tissues of strains studied correlated with the presence of a full-length copy of the hobo transposable element in the genome. Transposition of hobo in somatic tissue cells at a frequency 3.5 x 10-2 per site per X chromosome was shown by fluorescence in situ hybridization with salivary gland polytene chromosomes of larvae of one of the D. melanogaster strains having a full-length hobo copy. 相似文献
2.
Ladeveze V Aulard S Chaminade N Biemont C Periquet G Lemeunier F 《Genetical research》2001,77(2):135-142
The impact of the hobo transposable element in global reorganization of the Drosophila melanogaster genome has been investigated in transgenic lines generated by injection of hobo elements into the Hikone strain, which lacked them. In the present extensive survey, the chromosomal distribution of hobo insertion sites in the line 28 was found to be homogeneous and similar for all chromosomal arms, except 3L, when compared with other transgenic lines. However, some original features were observed in this line at the genetic and chromosomal levels. Several hotspots of insertion sites were observed on the X, second and third chromosomes. Five sites with a high frequency of hobo insertions were present on the 3L arm in most individuals tested, suggesting the action of selection for hobo element in some sites. The presence of doublets or triplet was also observed, implying that hobo inserts can show local jumps or insertions in preferred regions. This local transposition occurred independently in 11 specific genomic regions in many individuals and generations. The dynamics of this phenomenon were analysed across generations. These results support the use of the hobo system as an important tool in fundamental and applied Drosophila genetics. 相似文献
3.
We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites. 相似文献
4.
Galindo MI; Ladeveze V; Lemeunier F; Kalmes R; Periquet G; Pascual L 《Molecular biology and evolution》1995,12(5):723-734
The transposable element hobo has been introduced into the previously empty
Drosophila melanogaster strain Hikone so that its dynamics can be followed
and it can be compared with the P element. Five transformed lines were
followed over 58 generations. The results were highly dependent on the
culture temperature, the spread of hobo element being more efficient at 25
degrees C. The multiplication of hobo sequences resulted in a change in the
features of these lines in the hobo system of hybrid dysgenesis. The number
of hobo elements remained low (two to seven copies) and the insertions
always corresponded to complete sequences. Our findings suggest that,
despite their genetic similarities, P and hobo elements differ in many
aspects, such as mobility and regulation mechanisms.
相似文献
5.
6.
7.
Galindo MI Bigot Y Sánchez MD Periquet G Pascual L 《Molecular biology and evolution》2001,18(8):1532-1539
Hobo is one of the three Drosophila melanogaster transposable elements, together with the P and I elements, that seem to have recently invaded the genome of this species. Surveys of the presence of hobo in strains from different geographical and temporal origins have shown that recently collected strains contain complete and deleted elements with high sequence similarity (H strains), but old strains lack hobo elements (E strains). Besides the canonical hobo sequences, both H and E strains show other poorly known hobo-related sequences. In the present work, we analyze the presence, cytogenetic location, and structure of some of these sequences in E strains of D. melanogaster. By in situ hybridization, we found that euchromatic hobo-related sequences were in fixed positions in all six E strains analyzed: 38C in the 2L arm; 42B and 55A in the 2R arm; 79E and 80B in the 3L arm; and 82C, 84C, and 84D in the 3R arm. Sequence comparison shows that some of the hobo-related sequences from Oregon-R and iso-1 strains are similar to the canonical hobo element, but their analysis reveals that they are substantially diverged and rearranged and cannot code for a functional transposase. Our results suggest that these ubiquitous hobo-homologous sequences are immobile and are distantly related to the modern hobo elements from D. melanogaster. 相似文献
8.
Transposition of the vertebrate Tol2 transposable element in Drosophila melanogaster 总被引:2,自引:0,他引:2
The Tol2 element is a transposon found from a genome of a vertebrate, a small teleost medaka fish. Tol2 encodes a gene for a transposase which is active in vertebrate animals so far tested; for instance, in fish, frog, chicken and mammals, and transgenesis methods using Tol2 have been developed in these model vertebrates. However, it has not been known whether Tol2 can transpose in animals other than vertebrates. Here we report transposition of Tol2 in an invertebrate Drosophila melanogaster. First, we injected a transposon donor plasmid containing a Tol2 construct and mRNA encoding the Tol2 transposase into Drosophila eggs, and found that the Tol2 construct could be excised from the plasmid. Second, we crossed the injected flies, raised the offspring, and found that the Tol2 construct was integrated into the genome of germ cells and transmitted to the next generation. Finally, we constructed a Tol2 construct containing the white gene and injected the transposon donor plasmid and the transposase mRNA into fertilized eggs from the white mutant. We analyzed their offspring, and found that G1 flies with wild type red eyes could be obtained from 35% of the injected fly. We cloned and sequenced 34 integration loci from these lines and showed that these insertions were indeed created through transposition and distributed throughout the genome. Our present study demonstrates that the medaka fish Tol2 transposable element does not require vertebrate-specific host factors for its transposition, and also provides a possibility that Tol2 may be used as a new genetic tool for transgenesis and genome analysis in Drosophila. 相似文献
9.
The transposition frequency of the hobo mobile element in four successive generations of Drosophila melanogaster strain y2-717 after an acute gamma-irradiation with a dose of 30 Gr amounted to 7.5 x 10(-4) per site per genome per generation. Under the same conditions, PCR analysis of the genomic DNA of y2-717 flies detected new variants of defective hobo sequence. No changes in the hobo localization and PCR products compared with the control were detected in the case of single irradiation with doses of 3 and 30 Gr. The localizations of hobo element on polytene chromosomes of y2-717 strain did not change during 11 generations after five exposures of flies to 30 Gr. Irradiation of a highly unstable D. melanogaster strain y+743 did not increase the number of families with mutant progeny, yet increased the total number of mutant descendants almost twofold, from 5 to 9%. 相似文献
10.
11.
We have determined the copy number and the presence of full-size hobo transposable elements in eight Brasilian strains of Drosophila melanogaster. Genomic DNA was digested with AvaII and XhoI restriction enzymes, respectively, and probed with a 963 bp sequence of the hobo element. Variable numbers of full-sized and defective elements were detected in all strains. The range of the copy number was 22.13 +/- 4.52. Blots showed the presence of a 2.6 kb fragment, corresponding to the complete element, in all strains exception of one and the 1.0 kb sequence, correponding to the Th1 and Th2 repressor elements. There was neither association among copy numbers of hobo elements and latitude nor the mean annual temperatures in the original geographical region of each strain. 相似文献
12.
We have isolated and characterized several members of the hobo transposable element family from Korean populations of Drosophila melanogaster. All of the Korean lines tested appeared to have 3.0 kb hobo elements and a high copy number of smaller derivatives of the element. To determine whether a 3.0 kb hobo element of these populations is consistent with the role of an autonomous hobo element, we cloned and sequenced this hobo element. Based on the result of the entire DNA sequence, a cloned 3.0 kb element called HKN96, it was found to be the same as a fully-functional 2959 bp HFL1-type sequence. Each small element appeared to have arisen from the HFL1 element by a different internal deletion. A specific 1.7 kb Kh hobo element, which is the most abundant in the Korean lines tested, seems to have originated from the HFL1 hobo element by an internal deletion of 1253 bp by the removal of nucleotides between positions 939 and 2191. The sequences of the Th1 and Th2 elements appeared to be identical to that of the HFL1 with the exception of internal deletions of 1442 bp and 1455 bp removing nucleotides 940-2381 and 923-2377, respectively. Based on the number of TPE repeats, all of the members of the hobo element family in Korean lines tested have three perfect S repeats. The widespread presence of identical copies of the Kh deletion derivative suggests that it might have a role in the regulation of hobo-induced hybrid dysgenesis. 相似文献
13.
The lines with an active hobo elements as well as those without any hobo fragments were hybridized with the y2sc1waG line. This resulted in the appearance of a number of mutations at the white, miniature, and some other loci. The authors analysed, in which way the hobo transposable elements take part in mutagenesis in these crosses. Most of the white mutants obtained were analysed and transpositions of hobo and Stalker elements were demonstrated. Both independent and simultaneous transpositions were found. It was shown by means of the Southern blot analysis that additional hobo or Stalker insertion into or close to the parental unknown waG insertion resulted in mutant white phenotype's shift toward both extreme and partial reversion. Possible participation in mutagenesis of other mobile elements is also under debate. 相似文献
14.
The hobo transposable element of Drosophila melanogaster is known to induce a hybrid dysgenesis syndrome. Moreover it displays a polymorphism of a microsatellite in its coding region: TPE repeats. In European populations, surveys of the distribution of hobo elements with regard to TPE repeats revealed that the 5TPE element is distributed along a frequency gradient, and it is even more frequent than the 3TPE element in Western populations. This suggests that the invasive ability of the hobo elements could be related to the number of TPE repeats they contain. To test this hypothesis we monitored the evolution of 16 lines derived from five initial independent transgenic lines bearing the 3TPE element and/or the 5TPE element. Four lines bearing 5TPE elements and four bearing 3TPE elements were used as a noncompetitive genetic background to compare the evolution of the 5TPE element to that of the 3TPE element. Eight lines bearing both elements provided a competitive genetic context to study potential interactions between these two elements. We studied genetic and molecular aspects of the first 20 generations. At the molecular level, we showed that the 5TPE element is able to spread within the genome at least as efficiently as the 3TPE element. Surprisingly, at the genetic level we found that the 5TPE element is less active than the 3TPE element, and moreover may be able to regulate the activity of the 3TPE element. Our findings suggest that the invasive potential of the 5TPE element could be due not only to its intrinsic transposition capacity but also to a regulatory potential. 相似文献
15.
Bashkirov VN Matveenko BL Modestova EA Aslanukov AR Vasilĕv VA Kupriianova NS Korochkin LI 《Genetika》1999,35(10):1341-1348
Due to the complete absence of ribosomal DNA (genetic symbol bb-), the Xbb- chromosome of Drosophila is lethal both in homozygous conditions and in compound with the Xbb- chromosome. However, in the cross between the C(1)RM/Ybb- females and the Xbb-/BSYbb+ males, characterized by the development of lethal Xbb-/Ybb- zygotes, two fertile males were detected. These males possessed all the markers of the Xbb- chromosome but lacked the Y chromosome BS marker. Genetic analysis of their progeny showed that genes responsible for restoration of viability and fertility of these exceptional males were associated with the X chromosome. The crossover tests showed that in one case these genes were tightly linked to the w locus (the bbAM1 allele), and in the second case they were located 12.6 map units to the right of the Tu locus (the bbAM7 allele). It has also been shown that the bb locus was transposed to the X chromosome within the short arm of Y chromosome. Transposition of the BSYbb+ chromosome-specific rDNA sequences to the X chromosome was confirmed by means of Southern blotting. These data indicate that replacement of the bb locus is realized by transposition rather than recombination. 相似文献
16.
17.
We analyzed the integration specificity of the hobo transposable element of Drosophila melanogaster. Our results indicate
that hobo is similar to other transposable elements in that it can integrate into a large number of sites, but that some sites
are preferred over others, with a few sites acting as integration hot spots. A comparison of DNA sequences from 112 hobo integration
sites identified a consensus sequence of NTNNNNAC, but this consensus was insufficient to account for the observed integration
specificity. To begin to define the parameters affecting hobo integration preferences, we analyzed sequences flanking a donor
hobo element, as well as sequences flanking a hobo integration hot spot for their relative influence on hobo integration specificity.
We demonstrate experimentally that sequences flanking a hobo donor element do not influence subsequent integration site preference,
whereas, sequences contained within 31 base pairs flanking an integration hot spot have a significant effect on the frequency
of integration into that site. However, sequence analysis of the DNA flanking several hot spots failed to identify any common
sequence motif shared by these sites. This lack of primary sequence information suggests that higher order DNA structural
characteristics of the DNA and/or chromatin may influence integration site selection by the hobo element.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
19.
Evidence from in situ hybridizations of DNA from the transposable element hobo to polytene salivary gland chromosome squashes reveals that hobo occupies both cytological breakpoints of three of four endemic inversions sampled from natural populations of Drosophila melanogaster in the Hawaiian islands. The fourth endemic inversion has a single hobo insert at one breakpoint. Cosmopolitan inversions on the same chromosomes do not show this association. Frequencies of both endemic and cosmopolitan inversions in Hawaiian populations fall in ranges typical for natural populations of D. melanogaster sampled worldwide, suggesting that these results may be typical of other regions besides Hawaii. This appears to be the first direct demonstration that transposable elements are responsible for causing specific rearrangements found in nature; consequently, it is also the first direct demonstration that chromosome rearrangements can arise in nature in a manner predicted by results of hybrid dysgenic crosses in the laboratory. Possible population genetic and evolutionary consequences are discussed. 相似文献
20.
Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3.0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1.5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1.1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence. 相似文献