首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Values of K, delta G(o), delta H(o), delta S(o) and delta C(po) for the binding reaction of small organic ligands forming 1:1 complexes with either alpha- or beta-cyclodextrin were obtained by titration calorimetry from 15 degrees C to 45 degrees C. A hydrogen bond or hydrophobic interaction was introduced by adding a single functional group to the ligand. The thermodynamics of binding with and without the added group are compared to estimate the contribution of the hydrogen bond or hydrophobic interaction. A change in the environment of a functional group is required to influence the binding thermodynamics, but molecular size-dependent solute-solvent interactions have no effect. For phenolic O-H-O hydrogen bond formation, delta H(o) varies from -2 to -1.4 kcal mol(-1) from 15 degrees C to 45 degrees C, and delta C(p) is increased by 18 cal K(-1) mol(-1). The hydrophobic interaction has an opposite effect: in alpha-cyclodextrin, delta C(po) = -13.3 cal K(-1) mol(-1) per ligand -CH(2)-, identical to values found for the transfer of a -CH(2)-group from water to a nonpolar environment. At room temperature, the hydrogen bond and the -CH(2)-interaction each contribute about -600 cal mol(-1) to the stability (delta G(o)) of the complex. With increased temperature, the hydrogen bond stability decreases (i.e., hydrogen bonds "melt"), but the stability of the hydrophobic interaction remains essentially constant.  相似文献   

2.
The stable hydrogen (delta(2)H) and oxygen (delta(18)O) isotope ratios of organic and inorganic materials record biological and physical processes through the effects of substrate isotopic composition and fractionations that occur as reactions proceed. At large scales, these processes can exhibit spatial predictability because of the effects of coherent climatic patterns over the Earth's surface. Attempts to model spatial variation in the stable isotope ratios of water have been made for decades. Leaf water has a particular importance for some applications, including plant organic materials that record spatial and temporal climate variability and that may be a source of food for migrating animals. It is also an important source of the variability in the isotopic composition of atmospheric gases. Although efforts to model global-scale leaf water isotope ratio spatial variation have been made (especially of delta(18)O), significant uncertainty remains in models and their execution across spatial domains. We introduce here a Geographic Information System (GIS) approach to the generation of global, spatially-explicit isotope landscapes (= isoscapes) of "climate normal" leaf water isotope ratios. We evaluate the approach and the resulting products by comparison with simulation model outputs and point measurements, where obtainable, over the Earth's surface. The isoscapes were generated using biophysical models of isotope fractionation and spatially continuous precipitation isotope and climate layers as input model drivers. Leaf water delta(18)O isoscapes produced here generally agreed with latitudinal averages from GCM/biophysical model products, as well as mean values from point measurements. These results show global-scale spatial coherence in leaf water isotope ratios, similar to that observed for precipitation and validate the GIS approach to modeling leaf water isotopes. These results demonstrate that relatively simple models of leaf water enrichment combined with spatially continuous precipitation isotope ratio and climate data layers yield accurate global leaf water estimates applicable to important questions in ecology and atmospheric science.  相似文献   

3.
The preparation and spectroscopic characterization of duplex decamers containing site-specific cis-syn and trans-syn thymine dimers are described. Three duplex decamers, d(CGTATTATGC).d(GCATAATACG), d(CGTAT[c,s]TATGC).d(GCATAATACG), and d(CGTAT[t,s]TATGC).d(GCATAATACG), were prepared by solid-phase phosphoramidite synthesis utilizing cis-syn and trans-syn cyclobutane thymine dimer building blocks (Taylor et al., 1987; Taylor & Brockie, 1988). NMR spectra (500 MHz 2D 1H and 202 MHz 1D 31P) were obtained in "100%" D2O at 10 degrees C, and 1D exchangeable 1H spectra were obtained in 10% D2O at 10 degrees C. 1H NMR assignments for H5, H6, H8, CH3, H1', H2', and H2" were made on the basis of standard sequential NOE assignment strategies and verified in part by DQF COSY data. Comparison of the chemical shift data suggests that the helix structure is perturbed more to the 3'-side of the cis-syn dimer and more to the 5'-side of the trans-syn dimer. Thermodynamic parameters for the helix in equilibrium coil equilibrium were obtained by two-state, all or none, analysis of the melting behavior of the duplexes. Analysis of the temperature dependence of the T5CH3 1H NMR signal gave delta H = 44 +/- 4 kcal and delta S = 132 +/- 13 eu for the trans-syn duplex. Analysis of the concentration and temperature dependence of UV spectra gave delta H = 64 +/- 6 kcal and delta S = 178 +/- 18 eu for the parent duplex and delta H = 66 +/- 7 kcal and delta S = 189 +/- 19 eu for cis-syn duplex. It was concluded that photodimerization of the dTpdT unit to give the cis-syn product causes little perturbation of the DNA whereas dimerization to give the trans-syn product causes much greater perturbation, possibly in the form of a kink or dislocation at the 5'-side of the dimer.  相似文献   

4.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the effect of increasing chain-unsaturation on the structure and properties of the hydrated cerebrosides N-stearoyl, -oleoyl, and -linoleoyl galactosylsphingosine (NSGS, NOGS, and NLnGS, respectively). DSC of hydrated (70 wt% water) NSGS shows an endothermic transition at 85 degrees C (delta H = 18.0 kcal/mol NSGS) and a broad exothermic transition at 40-60 degrees C, the latter being dependent upon the previous cooling rate. X-Ray diffraction patterns recorded at 21, 61, and 86 degrees C provide evidence for interconversions between metastable and stable crystalline NSGS bilayer phases. The properties of the unsaturated-chain cerebrosides are more complex. Hydrated NOGS shows a single endothermic transition at 44.8 degrees C (delta H = 11.5 kcal/mol NOGS). However, incubation of NOGS at 49 degrees C for 24 h results in a second transition at 55.5 degrees C. By cycling NOGS between 0 and 49 degrees C complete conversion into this higher melting phase (delta H = 12.1 kcal/mol NOGS) is achieved. X-ray diffraction confirms a bilayer phase at all temperatures and delineates the conversions between a crystalline phase at 21 degrees C (bilayer period d = 56.5A), a second crystalline phase at 47 degrees C (d = 69.9A), and a liquid crystalline phase at 59 degrees C (d = 52.0A). The more unsaturated NLnGS shows two transitions, a sharp transition at 28 degrees C (delta H = 8.0 kcal/mol NLGS) and a broad, low-enthalpy transition at 42 degrees C (delta H = 0.4 kcal/mol NLGS). Again, incubation between the two transitions leads to a single transition at 44 degrees C (delta H = 9.3 kcal/mol NLGS). X-ray diffraction demonstrates conversions between two crystalline bilayer phases (d = 55.2A and d = 68.4A), and a liquid crystalline bilayer phase (d = 51.8A). Thus, increased unsaturation in the amide-linked fatty acyl chain of cerebrosides results in decreased chain-melting temperatures (NSGS greater than NOGS greater than NLnGS) and has marked effects on their structural properties.  相似文献   

5.
Hydroxylamine oxidoreductase (HAO) of the ammonia-oxidizing bacterium Nitrosomonas catalyzes the oxidation: NH2OH + H2O----HNO2 + 2e- + 2 H+. The heme-like chromophore P460 is part of a site which binds substrate, extracts electrons and then passes them to the many c hemes of the enzyme. Reduction of the c hemes by hydroxylamine is biphasic with apparent first-order rate constants k1 and k2. CO binds to ferrous P460 with apparent first-order rate constants, k1,CO. In this work we have measured the binding of CO to ferrous P460 of hydroxylamine oxidoreductase and the reduction by substrate of some of the 24 c hemes of the ferric enzyme. These reactions have been studied in water and 40% ethylene glycol, at temperatures ranging from -15 degrees C to 20.7 degrees C and at hydrostatic pressures ranging over 0.1-80 MPa. From the measurements, thermodynamic parameters delta V+ (activation volume), delta G+, delta H+, and delta S+ have been calculated. CO binding. Binding of CO to ferrous P460 was similar to the binding of CO to ferrous horseradish peroxidase. The change of solvent had only a limited effect on delta V+ (-30 ml.mol-1), delta G+, delta H+ or delta S+ and did not cause an inflection in the Arrhenius plot or downward displacement of the linear relationship between ln k1,CO and P at a critical temperature. Binding was exothermic at high temperatures. The response of the binding of CO to solvent, temperature and pressure suggested that the CO binding site had little access to solvent and was not susceptible to change in protein conformation. Fast phase of reduction of c hemes. Changing the solvent from water to 40% ethylene glycol resulted in a decrease from 90% to 50% in the relative number of c hemes reduced during the fast phase, an increase in activation volume from -3.6 ml.mol-1 to 57 ml.mol-1 and changes in other thermodynamic parameters. The activation volume increased with decreasing temperature. The Arrhenius plot had a downward inflection at about 0 degrees C and, in water or ethylene glycol, the linear dependence of ln k1 on P was displaced downwards as the temperature changed from 3.5 degrees C to -15 degrees C. Slow phase of reduction of c hemes. Changing the solvent from water to 40% ethylene glycol resulted in an increase in the relative number of c hemes reduced during the slow phase from 10% to 50%. The activation volume, which was not measurable in water because of the low absorbance change, was -30 ml.mol-1 in ethylene glycol. The activation volume increased with increasing temperature.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The phase behavior of partially hydrated 1, 2-dioleoylphosphatidylethanolamine (DOPE) has been studied using differential scanning calorimetry and X-ray diffraction methods together with water sorption isotherms. DOPE liposomes were dehydrated in the H(II) phase at 29 degrees C and in the L(alpha) phase at 0 degrees C by vapor phase equilibration over saturated salt solutions. Other samples were prepared by hydration of dried DOPE by vapor phase equilibration at 29 degrees C and 0 degrees C. Five lipid phases (lamellar liquid crystalline, L(alpha); lamellar gel, L(beta); inverted hexagonal, H(II); inverted ribbon, P(delta); and lamellar crystalline, L(c)) and the ice phase were observed depending on the water content and temperature. The ice phase did not form in DOPE suspensions containing <9 wt% water. The L(c) phase was observed in samples with a water content of 2-6 wt% that were annealed at 0 degrees C for 2 or more days. The L(c) phase melted at 5-20 degrees C producing the H(II) phase. The P(delta) phase was observed at water contents of <0.5 wt%. The phase diagram, which includes five lipid phases and two water phases (ice and liquid water), has been constructed. The freeze-induced dehydration of DOPE has been described with the aid of the phase diagram.  相似文献   

7.
From a study of the decay of the pH difference across vesicular membranes (delta pH) it has been possible to show that H+ and alkali metal ion (M+) concentration gradients across bilayer membranes (which are responsible for driving important biochemical processes) can be selectively perturbed by anaesthetics such as chloroform and benzyl alcohol by combining them with a suitable exchange ionophore. On adding the anaesthetic to the membrane in an environment containing metal ions M+ = K+, the rate of delta pH decay by H+/M+ exchange increases by a larger factor or by a smaller factor (when compared to that in a membrane environment with M+ = Na+) depending on whether the exchange ionophore chosen is monensin or nigericin. A rational explanation of this "metal ion specificity" can be given using the exchange ionophore mediated ion transport scheme in which the equilibrations at the "interfaces" are fast compared to the "translocation equilibration" between the species in the two layers of the membrane. The following three factors are responsible for the observed "specificity": On adding the anaesthetic (i) translocation rate constants increase, (ii) the concentrations of the M+ bound ionophores increase at the expense of H+ bound ionophores. (iii) Under our experimental conditions the rate determining species are the complexes monensin-K (Mon-K) and nigericin-H (Nig-H) for M+ = K+ whereas they are monensin-H (Mon-H) and nigericin-Na (Nig-Na) for M+ = Na+. Possible anaesthetic induced membrane perturbations contributing to the above mentioned changes in the membrane are (A), the loosening of the membrane structure and (B), an associated increase in the membrane hydration (and membrane dielectric constant). An analysis of the consequent changes in the various transport step shows the following: (a), The anaesthetic induced changes in the translocation rates of electrically charged species are not relevant in the explanation of the observed changes in the delta pH decay rates. (b), Changes in the rates of fast equilibria at the interface contribute to changes in KH and KM. (c), A suggestion made in the literature, that a significant interaction between the dipole moment of the monensin-K complex and the membrane slows down its translocation, is not valid. (d), The ability to explain rationally all the delta pH decay data confirms the validity of the transport scheme used. In our experiments delta pH across the vesicular membrane was created by pH jump coming from a temperature jump.  相似文献   

8.
We report the first calorimetric investigation of steroid diamine binding to a DNA duplex. Absorption spectroscopy, batch calorimetry, and differential scanning calorimetry (DSC) have been used to detect, monitor, and thermodynamically characterize the binding of the steroid diamine, dipyrandium, to poly d(AT). The following thermodynamic data for the binding in 16 mM Na+ at 25 degrees C have been obtained: delta G degree = -6.5 kcal/mol, delta H degree = +4.2 kcal/mol, and delta S = +36 e.u. We interpret the endothermic binding enthalpy in terms of steroid-induced conformational changes in the duplex (e.g. "kinking"). The large positive entropy is interpreted in terms of binding-induced release of bound water and condensed sodium ions. The salt-dependence of the binding constant is interpreted in terms of dipyrandium site-binding involving only one of the two charged ends of the steroid. The optical and DSC curves for the unsaturated steroid-poly d(AT) complexes exhibit biphasic behavior. A comparison of the van't Hoff and the calorimetric transition enthalpies reveals that steroid binding reduces the cooperativity of the transition.  相似文献   

9.
C S Wu  J T Yang 《Biopolymers》1990,30(3-4):381-388
The conformation of a 13-residue C-peptide analogue of ribonuclease A, suc-AET-AAAKFLRAHA-CONH2, in NaDodSO4 solutions with respect to temperature was studied with CD. The equilibrium constant of unfolding yielded a straight line in a van't Hoff plot. In 10 mM NaDodSO4, delta G mu = 120 cal/mol, delta H mu = 700 cal/mol, and delta S mu = 2.0 entropy units all on per helical residue. These values compared fairly well with the thermodynamic parameters of the uncharged helix-coil transition of (Glu)n in 0.1 M NaCl based on the theories of Zimm and Bragg and Zimm and Rice. The peptide was not unfolded at 75 degrees C completely. Even in water without surfactant it was not a "random coil."  相似文献   

10.
Oxygen atoms in plant products originate from CO(2), H(2)O and O(2), precursors with quite different delta18O values. Furthermore their incorporation by different reactions implies isotope effects. On this base the resulting non-statistical 18O distributions in natural compounds are discussed. The delta18O value of cellulose is correlated to that of the leaf water, and the observed 18O enrichment (approximately +27 per thousand) is generally attributed to an equilibrium isotope effect between carbonyl groups and water. However, as soluble and heterotrophically synthesised carbohydrates show other correlations, a non-statistical 18O distribution - originating from individual biosynthetic reactions - is postulated for carbohydrates. Similarly, the delta18O values of organic acids, carbonyl compounds, alcohols and esters indicate water-correlated, but individual 18O abundances (e.g. O from acyl groups approximately +19% above water), depending upon origin and biosyntheses. Alcoholic groups introduced by monooxygenase reactions, e.g. in sterols and phenols, show delta18O values near +5 per thousand, in agreement with an assumed isotope fractionation factor of approximately 1.02 on the reaction with atmospheric oxygen (delta18O=+23.5 per thousand). Correspondingly, a "thermodynamically ordered isotope distribution" is only observed for oxygen in some functional groups correlated to an origin from CO(2) and H(2)O, not from O(2). The individual isotopic increments of functional groups permit the prediction of global delta18O values of natural compounds on the basis of their biosynthesis.  相似文献   

11.
1. The objective of this investigation was to determine whether structural differences between apolipoproteins could be detected by heat denaturation. 2. The apoproteins of human serum high density lipoprotein (HDL2, d = 1.070-1.125 and HDL3, d = 1.125-1.21 g/ml), their major polypeptide constituents (R-Thr and R-Gln), and apochylomicrons were investigated. 3. Heat denaturation was found to be reversible in the temperature range from 20 to 80 degrees. 4. The thermodynamic parameters of heat denaturation delta F, delta H, delta S and delta Cp were calculated on the basis of a single transition from the "native" to "denatured" state for apo-HDL2, apochylomicrons, R-Thr and R-Gln; for apo-HDL3 these parameters were calculated on the basis of two transitions. 5. The thermodynamic parameters, with the exception of delta F, which describe heat denaturation of high density apolipoprotein, of high density apolipoprotein polypeptides and of apochylomicrons were found to be similar on a molar basis and to have approximately the same values as the thermodynamic parameters which describe heat denaturation of non-lipid binding proteins; on a weight basis differences were apparent between the apolipoproteins and the polypeptides or non-lipid binding proteins.  相似文献   

12.
N A Sharif  J Hughes 《Peptides》1989,10(3):499-522
The opioid peptides, [3H]DAGO and [3H]DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. [3H]DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, [3H]DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with "hotspots" in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal "patches" and "streaks," amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra. Tissues of high delta receptor concentration included, OB (external plexiform layer), striatum, n. accumbens, amygdala and cortex (layers I-II and V-VI). Delta receptors in the guinea pig were, in general, similarly distributed to the rat, but in contrast to the latter, the hindbrain regions such as the thalamus, geniculate bodies, central grey and superior and inferior colliculi of the guinea pig were apparently more enriched than the rat. These patterns of mu and delta site distribution differed dramatically from that of the kappa opioid sites in these species studied with the peptide [125I]dynorphin(1-8).  相似文献   

13.
The influence of acyl chain-length asymmetry on the thermodynamic parameters (Tm, delta H, and delta S) associated with the reversible main phase transition of aqueous dispersions prepared from saturated diacyl phosphatidylcholines was studied by high-resolution differential scanning calorimetry. Two series of saturated diacyl phosphatidylcholines, grouped according to their molecular weights of 678 and 706, with a total number of 25 molecular species were examined. The normalized acyl chain-length difference between the sn-1 and sn-2 acyl chains for a given phospholipid molecule in the gel-state bilayer is expressed quantitatively by the structural parameter delta C/CL, and the values of delta C/CL for the two series of lipids under study vary considerably from 0.04 to 0.67. When the value of delta C/CL is within the range of 0.09-0.40, it was shown that the thermodynamic parameters are, to a first approximation, a linear function of delta C/CL with a negative slope. In addition, the experimental Tm values and the predicted Tm values put forward by Huang (Biochemistry (1991) 30, 26-30) are in very good agreement. Beyond the point of delta C/CL = 0.41, the influence of acyl chain-length asymmetry on the thermodynamic parameters deviates significantly from a linear function. In fact, within the range of delta C/CL values of 0.42-0.67, the thermodynamic parameters in the Tm (or delta H) vs. delta C/CL plot were shown to be bell-shaped with the maximal Tm (or delta H) at delta C/CL = 0.57. These results are discussed in terms of changes in the acyl chain packing modes of various phosphatidylcholine molecules within the gel-state bilayer in excess water.  相似文献   

14.
Shift in body fluid compartments after dehydration in humans   总被引:1,自引:0,他引:1  
To investigate the influence of [Na+] in sweat on the distribution of body water during dehydration, we studied 10 volunteer subjects who exercised (40% of maximal aerobic power) in the heat [36 degrees C, less than 30% relative humidity (rh)] for 90-110 min to produce a dehydration of 2.3% body wt (delta TW). After dehydration, the subjects rested for 1 h in a thermoneutral environment (28 degrees C, less than 30% rh), after which time the changes in the body fluid compartments were assessed. We measured plasma volume, plasma osmolality, and [Na+], [K+], and [Cl-] in plasma, together with sweat and urine volumes and their ionic concentrations before and after dehydration. The change in the extracellular fluid space (delta ECF) was estimated from chloride distribution and the change in the intracellular fluid space (delta ICF) was calculated by subtracting delta ECF from delta TW. The decrease in the ICF space was correlated with the increase in plasma osmolality (r = -0.74, P less than 0.02). The increase in plasma osmolality was a function of the loss of free water (delta FW), estimated from the equation delta FW = delta TW - (loss of osmotically active substance in sweat and urine)/(control plasma osmolality) (r = -0.79, P less than 0.01). Free water loss, which is analogous to "free water clearance" in renal function, showed a strongly inverse correlation with [Na+] in sweat (r = -0.97, P less than 0.001). Fluid movement out of the ICF space attenuated the decrease in the ECF space.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Stable carbon isotopes (13C) were determined for phytoplanktonand dissolved inorganic carbon (DIC) from Lake Apopka, a shallow,polymictic and hypereutrophic lake in Florida, USA. Bulk planktondominated by pico- and nanqanobacteria were enriched in 13(–13.1± 1.1%) as a result of assimilation of extremely 13C-richDIC (13C = 9.6 ± 3.0%). Diatoms (Aulacoseira spp.) hada 13C of –14.3 ± 0.6% that was slightly more negativethan that of small cyanobacteria. Meroplanktonic diatoms hada 13C (–13.6 ± 1.8%), similar to their planktoniccounterparts. The 13C of a colonial cyanobacterium (Microcystisincerta) was exceptionally heavy (–3.0 ± 1.0%)and attributed to localized carbon limitation. Seasonal variationin 13C of bulk plankton was small (4%) relative to reports forother lacustrine systems No difference in the 13C of bulk planktonhorn surface water between stratified and non-stratified periodswas found. No measurable changes in 13C of bulk plankton wereindicated in light and dark incubation experiments Frequentwind mixing of the water column, high DIC concentration, andconsistently high lake productivity were used to explain thetemporal and spatial isotope consistency of phytoplankton inthis lake.  相似文献   

16.
This extension of the liquid hydrocarbon model seeks to quantify the thermodynamic contributions to protein stability from the removal of nonpolar and polar surface from water. Thermodynamic data for the transfer of hydrocarbons and organic amides from water to the pure liquid phase are analyzed to obtain contributions to the thermodynamics of folding from the reduction in water-accessible surface area. Although the removal of nonpolar surface makes the dominant contribution to the standard heat capacity change of folding (delta C0fold), here we show that inclusion of the contribution from removal of polar surface allows a quantitative prediction of delta C0fold within the uncertainty of the calorimetrically determined value. Moreover, analysis of the contribution of polar surface area to the enthalpy of transfer of liquid amides provides a means of estimating the contributions from changes in nonpolar and polar surface area as well as other factors to the enthalpy of folding (delta H0fold). In addition to estimates of delta H0fold, this extension of the liquid hydrocarbon model provides a thermodynamic explanation for the observation [Privalov, P. L., & Khechinashvili, N. N. (1974) J. Mol. Biol. 86, 665-684] that the specific enthalpy of folding (cal g-1) of a number of globular proteins converges to a common value at approximately 383 K. Because amounts of nonpolar and polar surface area buried by these proteins upon folding are found to be linear functions of molar mass, estimates of both delta C0fold and delta H0fold may be obtained given only the molar mass of the protein of interest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Enthalpies of solution in water, delta H0sol, and vant'Hoff enthalpies of sublimation, delta H0subl, were determined experimentally for a number of crystalline 2-alkyl derivatives of 9-methyladenine: m2(2,9)Ade, e2m9Ade, pr2m9Ade and but2m9Ade. Standard enthalpies of hydration, delta H0hydr derived from these data were corrected for the calculated cavity terms, delta H0cav, to yield enthalpies of interaction, delta H0int, of the solutes with their hydration shells. The apparent residual contribution of alkyl groups, R, to the enthalpy of interaction delta delta H0int (R) was found to increase linearly with the number of CH2 groups added upon alkyl substitution, whereas this contribution calculated per unit area of the water-accessible molecular surface, SB, of alkyl residues delta delta H0int (R): delta SB(R) appeared constant over the whole series of the compounds investigated. This indicates that alkyl groups substituted at the C(2) carbon atom of the adenine contribute additively to the van der Waals' part of the enthalpy of interaction and do not affect the electrostatic part of the energy of interaction of the solutes with their hydration shells.  相似文献   

18.
The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.  相似文献   

19.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

20.
Stable carbon isotope discrimination (delta13C), photosynthetic performance (A), dry matter accumulation (DW), and sucrose yield (Y(s)) of sugar beet were evaluated in a glasshouse experiment under transient (TS) and permanent (PS) water stress. A was significantly reduced under drought, to an extent depending on stress duration. The reduced A was strictly associated with a low DW and Y(s), the later being 42% lower in PS than control plants (C). Restoring water steeply increased A and the associated leaf traits (RWC, leaf water potential etc.), but the increase of Y(s) was negligible. Therefore, the negative effects of severe water stress in the early growth period, though reversible on gas-exchange and most leaf traits, can drastically reduce Y(s) of sugar beet. Furthermore, A seems not to be effective in predicting sucrose accumulation, although it was very effective in detecting the occurrence of plant water stress. The A/C(i) model was used to assess the photosynthetic adjustments to continuous or transient drought by calculating the photosynthetic parameters Vcmax and Jmax and then compared with delta13C. Mesophyll conductance (g(m)) was estimated by comparing delta13C measured on soluble sugars and gas-exchange data. This approach confirmed the expectation that g(m) was limiting A and that there was a significant drop in [CO2] from the substomatal cavities and the chloroplast stroma both in favourable and drought conditions. Therefore, the carbon concentration at the carboxylation site was overestimated by 25-35% by conventional gas-exchange measurements, and Vcmax was consistently underestimated when g(m) was not taken into account, especially under severe drought. Root delta13C was found to be strictly related to sucrose content (brix%), Y(s) and root dry weight, and this was especially clear when delta13C was measured on bulk dry matter. By contrast, leaf delta13C measured in soluble sugars (delta(s)) and bulk dry matter (delta(dm)) were found to correlate weakly to brix% and yield, and this was not surprising as the integration time-scale of leaf delta(s) and delta(dm) were found to be shorter than that of root delta13C in bulk dry matter. The effect of water stress on diffusive and biochemical limitations with different integration times ranged from 1 d (leaf delta(s)) to more than 1 month (root delta(dm)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号