首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoids are dietary components involved in decreasing oxidative stress in the vascular endothelium and thus the risk of endothelial dysfunction. However, their very low concentrations in plasma place this role in doubt. Thus, a relationship between the effective intracellular concentration of flavonoids and their bioactivity needs to be assessed. This study examined the uptake of physiological concentrations of cyanidin 3-glucoside, a widespread dietary flavonoid, into human vascular endothelial cells. Furthermore, the involvement of the membrane transporter bilitranslocase (TC No. 2.A.65.1.1) as the key underlying molecular mechanism for membrane transport was investigated by using purified anti-sequence antibodies binding at the extracellular domain of the protein. The experimental observations were carried out in isolated plasma membrane vesicles and intact endothelial cells from human endothelial cells (EA.hy926) and on an ischemia-reperfusion model in isolated rat hearts. Cyanidin 3-glucoside was transported via bilitranslocase into endothelial cells, where it acted as a powerful intracellular antioxidant and a cardioprotective agent in the reperfusion phase after ischemia. These findings suggest that dietary flavonoids, despite their limited oral bioavailability and very low postabsorption plasma concentrations, may provide protection against oxidative stress-based cardiovascular diseases. Bilitranslocase, by mediating the cellular uptake of some flavonoids, is thus a key factor in their protective activity on endothelial function.  相似文献   

2.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 microM, morin and rutin had similar effects at concentrations of about 200 microM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin greater than morin greater than rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

3.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

4.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

5.
The effects of gamma irradiation (150-3000 rad) on prostacyclin synthesis (PGI2) and Na+-dependent amino acid uptake (alpha-aminoisobutyric acid, AIB) were assessed in vitro in bovine pulmonary artery endothelial cells grown in plastic culture dishes. A dose-dependent increase in both PGI2 synthesis and AIB was found 24 h after irradiation at exposure levels greater than 600 rad. The increase in PGI2 synthesis [297% of sham-irradiated values at 3000 rad, P less than 0.01] was due to an increase in release of arachidonic acid from plasma membrane stores as well as stimulation of cyclooxygenase and/or prostacyclin synthetase enzymes. The increase in AIB uptake (75% increase at 3000 rad compared to sham-exposure values) correlated with the increased synthesis of PGI2 (r = 0.94). There was also a dose-dependent increase in the number of cells that became detached from the culture dishes during the 24-h period after irradiation. The changes in PGI2 synthesis and AIB uptake induced by gamma irradiation differed if the endothelial cells were grown on cover slips, indicating that the endothelial response to irradiation may be dependent on the interaction between the endothelial cell and its extracellular basement membrane matrix.  相似文献   

6.
Morin is a flavonoid present in fruits and Chinese herbs. Based on in vitro studies, morin has been reported to show various beneficial biological activities. However, there is growing evidence that conjugative metabolism is central to the biological fate of flavonoids. Therefore, the biological effects of morin could be primarily determined by its conjugated metabolites. In this study, the effects of morin and its sulfates/glucuronides on the production of nitric oxide (NO) and cytokines from lipopolysaccharide (LPS)-activated macrophages were individually investigated and compared. The results indicated that the 50% NO production was inhibited from LPS-activated RAW 264.7 cells by 1.25 mM morin and 1.25 microM morin sulfates/glucuronides. Meanwhile, the 50% inhibition concentration (IC50) values of morin and morin sulfates/glucuronides in activated peritoneal macrophages were 1.5 mM morin and 1.5 microM morin sulfates/glucuronides, respectively. In addition, 30% of the tumor necrosis factor-alpha (TNF-alpha) and 35% of the interleukin (IL)-12 productions from activated macrophages were inhibited by 2-2.5 mM morin and 2-2.5 microM morin sulfates/glucuronides, respectively. Furthermore, phagocyte activities in the peripheral blood of those for mice dosed with morin for two months were about 65-70% of controls. Lower NO production and reduced macrophage phagocytic activities corresponded to LPS-resistant state. These findings indicated that morin may exhibit anti-inflammatory activity and reduced the incidence of experimental septic shock through decreasing the functions of macrophages and may regulate immune response through modulating the cytokine profiles. Therefore, morin could be a promising therapeutic candidate for inflammatory disease due to the strong activity of its metabolites.  相似文献   

7.
We have investigated the effects of endothelin on phosphoinositide metabolism and Ca2+ mobilization in cultured A10 cells. Endothelin stimulated a significant increase in inositol phosphate formation in a time- and dose-dependent manner. IP3 was significantly elevated by 30 sec and reached a 2.0-fold above control at 1 min. The EC50 for endothelin was 0.5 nM. The initiation of inositol phosphate formation was independent of extracellular Ca2+, and the Ca2+ ionophore, A23187, did not stimulate IP3 formation. However, the sustained elevation of inositol phosphates was partially inhibited by incubating cells in buffer lacking Ca2+ or in buffer containing nicardipine. Endothelin mobilized both intracellular and extracellular Ca2+ reaching a peak intracellular concentration of 350 +/- 11 nM by 1 min when cells were bathed with Ca2+-complete buffer. Intracellular Ca2+ remained 2-fold above baseline for at least 15 min. In contrast, when cells were exposed to endothelin in Ca2+-free buffer, the peak value of [Ca2+]i was 195 +/- 20 nM and returned to baseline by 2 min. Nicardipine completely blocked the influx of extracellular Ca2+ but did not interfere with the mobilization of intracellular stores. We conclude that endothelin produces a rapid and sustained elevation in inositol phosphate formation. The rapid production of IP3 is consistent with the time course for mobilization of intracellular Ca2+. Elevated cytosolic Ca2+ levels are maintained by the influx of extracellular Ca2+ through a nicardipine-sensitive Ca2+ channel and are involved in the sustained formation of inositol phosphates. These data provide an explanation for the sustained, nicardipine-inhibitable contraction of coronary artery strips induced by endothelin.  相似文献   

8.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds, including fisetin, morin and myricetin, on the susceptibility of low-density lipoprotein (LDL) to oxidative modification and on oxLDL uptake in macrophages. The results demonstrated that fisetin had stronger inhibitory activity than the other two on inhibiting Cu(2+)-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. The class B scavenger receptor, CD36, to which oxLDL binds, is present in atherosclerotic lesions. Treatment of U937-derived macrophages with myricetin (20 microM) significantly inhibited CD36 cell surface protein and mRNA expression (p<0.01). Fisetin, morin and myricetin (20 microM) also reduced the feed-forward induction of CD36 mRNA and surface protein expression by PPARgamma. The inhibition of CD36 by flavonols was mediated by interference with PPARgamma activation thus counteracting the deleterious autoamplification loop of CD36 expression stimulated by PPARgamma ligand. All three flavonols (10 and 20 microM) markedly decreased the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake in U937-derived macrophages dose-dependently. Current evidences indicate that fisetin, morin and myricetin not only prevent LDL from oxidation but also block oxLDL uptake by macrophages at least in part through reducing CD36 gene expression on macrophages. In conclusion, flavonols may play a role in ameliorating atherosclerosis.  相似文献   

9.
Cultured endothelial cells release a potent vasoconstrictor peptide, endothelin. Cumulative addition of synthetic endothelin to isolated rabbit aortic rings elicited a concentration-dependent increase in contractile tension which was endothelium-independent. In cultured rabbit vascular smooth muscle cells loaded with the fluorescent dye fura 2, endothelin induced a concentration-dependent increase in [Ca2+]i over the range of 0.01 to 100 nM. Moreover, in the absence of extracellular Ca2+, endothelin could still induce an increase in [Ca2+]i. In addition, endothelin stimulated 45Ca2+ efflux from preloaded vascular smooth muscle cells in the presence and absence of extracellular Ca2+, as well as stimulating 45Ca2+ influx in a concentration-dependent manner. Measurement of inositol phosphates in [3H]-myoinositol-labelled vascular vascular trisphosphate. Unlabelled endothelin inhibited (125I)-endothelin binding to cultured rabbit vascular smooth muscle cells in a concentration-dependent manner. Binding was not inhibited by other vasoactive hormones or calcium channel ligands, suggesting cell surface receptors specific for endothelin. We conclude that one of the initial membrane events in the action of endothelin is to induce phospholipase C-stimulated PIP2 hydrolysis and that this signalling mechanism is initiated by endothelin/receptor interaction at the plasma membrane.  相似文献   

10.
11.
Epidemiologic studies suggest an inverse association of tea consumption with cardiovascular disease. The antioxidant effects of flavonoids in tea (including preventing oxidative damage to LDL) are among the potential mechanisms that could underlie the protective effects. Other possible mechanisms include attenuating the inflammatory process in atherosclerosis, reducing thrombosis, promoting normal endothelial function, and blocking expression of cellular adhesion molecules. Cocoa and chocolate can also be rich sources of flavonoids. Flavanols and procyanidins isolated from cocoa exhibit strong antioxidant properties in-vitro. In acute feeding studies, flavanol-rich cocoa and chocolate increased plasma antioxidant capacity and reduced platelet reactivity. Based on limited data, approximately 150 mg of flavonoids is needed to trigger a rapid antioxidant effect and changes in prostacyclin. Some dose-response evidence demonstrates an antioxidant effect with approximately 500 mg flavonoids. Brewed tea typically contains approximately 172 mg total flavonoids per 235 ml (brewed for 2 min); hence, consumption of 1 and 3.5 cups of tea would be expected to elicit acute and chronic physiologic effects, respectively. Chocolate is more variable with some products containing essentially no flavonoids (0.09 mg procyanidin/g), whereas others are high in flavonoids (4 mg procyanidin/g). Thus, approximate estimates of flavonoid rich chocolate needed to exert acute and chronic effects are 38 and 125 g, respectively. Collectively, the antioxidant effects of flavonoid-rich foods may reduce cardiovascular disease risk.  相似文献   

12.
In the classical renin-angiotensin system, circulating ANG II mediates growth stimulatory and hemodynamic effects through the plasma membrane ANG II type I receptor, AT1. ANG II also exists in the intracellular space in some native cells, and tissues and can be upregulated in diseases, including hypertension and diabetes. Moreover, intracellular AT1 receptors can be found associated with endosomes, nuclei, and mitochondria. Intracellular ANG II can function in a canonical fashion through the native receptor and also in a noncanonical fashion through interaction with alternative proteins. Likewise, the receptor and proteolytic fragments of the receptor can function independently of ANG II. Participation of the receptor and ligand in alternative intracellular pathways may serve to amplify events that are initiated at the plasma membrane. We review historical and current literature relevant to ANG II, compared with other intracrines, in tissue culture and transgenic models. In particular, we describe a new transgenic mouse model, which demonstrates that intracellular ANG II is linked to high blood pressure. Appreciation of the diverse, pleiotropic intracellular effects of components of the renin-angiotensin system should lead to alternative disease treatment targets and new therapies.  相似文献   

13.
CD26 is a T cell surface molecule with dipeptidyl peptidase IV (DPPIV) enzyme activity in its extracellular region. In addition to its membrane form, CD26 exists in plasma as a soluble form (sCD26), which is the extracellular domain of the molecule thought to be cleaved from the cell surface. In this paper, we demonstrate that sCD26 mediates enhanced transendothelial T cell migration, an effect that requires its intrinsic DPPIV enzyme activity. We also show that sCD26 directly targets endothelial cells and that mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGFIIR) on the endothelial cell surface acts as a receptor for sCD26. Our findings therefore suggest that sCD26 influences T cell migration through its interaction with M6P/IGFIIR.  相似文献   

14.
Quercetin uptake in Jurkat cells is extremely rapid and associated with a remarkable accumulation of the flavonoid, dependent on its binding to intracellular components. Cell-associated quercetin is biologically active, quantitatively consumed to promote survival in the presence of reactive species, such as peroxynitrite (ONOO?), or reduction of extracellular oxidants via activation of plasma membrane oxidoreductases. In alternative, quercetin is very slowly released upon post-incubation in drug-free medium, an event significantly accelerated by extracellular albumin. Quercetin uptake is also observed in isolated mitochondria, resulting in an enormous accumulation of the flavonoid, consumed under conditions associated with prevention of lipid peroxidation induced by ONOO?. Interestingly, remarkable quercetin accumulation is also detected in the mitochondria isolated from quercetin-pre-loaded cells, and exposure to either ONOO? or extracellular oxidants caused the parallel loss of both the mitochondrial and cytosolic fractions of the flavonoid. In conclusion, Jurkat cells accumulate large amounts of quercetin and even larger amounts of the flavonoid further accumulate in their mitochondria. Intramitochondrial quercetin appears to be functional for prevention of mitochondrial damage as well as for redistribution to the cytosol, when the fraction of the flavonoid therein retained is progressively consumed either by cell-permeant oxidants or by activation of plasma membrane oxidoreductases.  相似文献   

15.
The effect of flavonoids on beta-hexosaminidase transport and endocytosis has been studied in cultured human skin fibroblasts. In mucolipidosis II fibroblast cultures, characterized by their preferential secretion of most newly synthesized hydrolases, quercetin and phloretin (200 microM) inhibited beta-hexosaminidase synthesis as well as total culture-associated enzyme activity. Taxifolin induced a 2.4-fold increase in the total enzyme activity without altering the intra- and extracellular distribution of the enzyme. Rutin, although less effective, also stimulated an overall increase in total enzyme. The flavonoid effects were all concentration-dependent. Very little effect was observed in either the distribution or the total beta-hexosaminidase activity in normal fibroblast cultures. Taxifolin and hesperitin inhibited receptor-mediated endocytosis of beta-hexosaminidase by fibroblasts up to 50% of control uptake. Naringin, quercetin, and phloretin moderately inhibited uptake by 30% while rutin and fisetin had no effect. The results demonstrate that certain naturally occurring flavonoids affect the secretion of lysosomal enzymes as well as their endocytosis by fibroblasts. Since most individuals ingest up to one gram per day of these substances, flavonoids may prove to have significant effects on normal lysosomal enzyme physiology.  相似文献   

16.
Although it is well known that endothelial cells transport serotonin (5-HT) from extracellular to intracellular locations, it has been generally assumed that smooth muscle cells do not accumulate 5-HT but, rather, respond to 5-HT through a receptor activity unrelated to uptake of this amine or via stimulation of endothelial-derived relaxing factor. In the present study smooth muscle cells (PASMC), isolated and cultured from bovine pulmonary artery, were evaluated for 5-HT uptake under a variety of conditions. 5-HT uptake was linear up to 15 min and the rate was seven- to eightfold higher than that by bovine pulmonary artery endothelial cells. There was intracellular metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA). The uptake was inhibited by exposure to 4 degrees C, absence of Na+ from the medium, and agents such as imipramine, verapamil, ketanserin, and methiothepin. Like that of endothelial cells, 5-HT uptake by PASMC was stimulated by exposure of cells to anoxia for 24 hr. Unlike endothelial cells that showed no morphological changes, PASMC at early passage showed dendritic formation after 30-60 min exposure to 5-HT at a concentration as low as 10(-8) M. Although this configurational change in response to 5-HT was lost with passage of cells, transport of 5-HT by these cells was retained. The configurational change was blocked by agents that inhibited 5-HT uptake, such as imipramine, verapamil, ketanserin, and methiothepin; it was unaffected by inhibitors of protein kinase C, phospholipase C, and calmodulin or absence of Ca2+ from the medium. We conclude that PASMC, as well as endothelial cells, accumulate 5-HT; there appears to be a close relationship between 5-HT uptake and configurational change of early passaged PASMC in culture. The factor(s) required for the configurational change are absent in endothelial cells and lost during passage of PASMC.  相似文献   

17.
Recently, a potent vasoconstrictor peptide, endothelin (EDT), was isolated from vascular endothelial cells. We examined its effect on rat vascular smooth muscle cells (VSMCs). EDT induced the elevation of intracellular calcium, which was dependent on extracellular calcium and inhibited by a calcium-channel antagonist in a competitive manner. EDT caused a rapid and transient increase in the c-fos and c-myc mRNA levels and stimulated the DNA synthesis of VSMCs in a dose-dependent manner. This effect of EDT on the proliferation of VSMCs might be related to the development of atherosclerosis.  相似文献   

18.
Nutritional flavonoids modulate estrogen receptor alpha signaling   总被引:3,自引:0,他引:3  
  相似文献   

19.
The multifunctional scavenger receptor stabilin-1 (STAB1, FEEL-1, CLEVER-1, KIAA0246) was originally identified as the MS-1 antigen, expressed by sinusoidal endothelial cells in human spleen. Extensive histological studies revealed that stabilin-1 is also expressed by tissue macrophages and sinusoidal endothelial cells in the healthy organism; its expression on both macrophages and different subtypes of endothelial cells is induced during chronic inflammation and tumorigenesis. In vitro induction of stabilin-1 in macrophages requires the presence of glucocorticoids. Stabilin-1 is involved in two intracellular trafficking pathways: receptor mediated endocytosis and recycling; and shuttling between the endosomal compartment and trans-Golgi network (TGN). The latter intracellular pathway of stabilin-1 trafficking is mediated by GGAs, clathrin adaptors that interact with the DDSLL motif in the cytoplasmic tail of stabilin-1. When expressed by alternatively activated macrophages, stabilin-1 mediates the uptake and targeting for degradation of acLDL and SPARC, a regulator of tissue remodeling. Likewise, stabilin-1 in macrophages is involved in intracellular sorting and lysosomal delivery of the novel stabilin- 1-interacting chitinase-like protein (SI-CLP). Indirect evidence suggests that stabilin-1 is involved in adhesion and transmigration in various cell types (including tumor cells, leukocytes, and lymphocytes); however, its rapid recycling and scant level of surface expression argue against its universal role in cell adhesion. In summary, stabilin-1 is a homeostatic receptor which links signals from the extracellular environment to intracellular vesicular processes, creating a potential impact on the macrophage secretion profile.  相似文献   

20.
Despite intracellular L-arginine concentrations that should saturate endothelial nitric oxide synthase (eNOS), nitric oxide production depends on extracellular L-arginine. We addressed this 'arginine paradox' in bovine aortic endothelial cells by simultaneously comparing the substrate dependence of L-arginine uptake and intracellular eNOS activity, the latter measured as L-[3H]arginine conversion to L-[3H]citrulline. Whereas the Km of eNOS for L-arginine was 2 microM in cell extracts, the L-arginine concentration of half-maximal eNOS stimulation was increased to 29 microM in intact cells. This increase likely reflects limitation by L-arginine uptake, which had a Km of 108 microM. The effects of inhibitors of endothelial nitric oxide synthesis also suggested that extracellular L-arginine availability limits intracellular eNOS activity. Treatment of intact cells with the calcium ionophore A23187 reduced the L-arginine concentration of half-maximal eNOS activity, which is consistent with a measured increase in L-arginine uptake. Increases in eNOS activity induced by several agents were closely correlated with enhanced L-arginine uptake into cells (r = 0.89). The 'arginine paradox' may be explained in part by regulated L-arginine uptake into a compartment, probably represented by caveolae, that contains eNOS and that is distinct from the bulk cytosolic L-arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号