首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
大蟾蜍血清中某些离子浓度季节变化的研究   总被引:3,自引:0,他引:3  
本文研究了大蟾蜍血清中钾、钠、钙、氯四种离子浓度在不同季节的变化。实验结果表明:大蟾蜍血清中钾、钠两种离子与钙、氯两种离子的变化趋势相反,尤其以氯与钠的相反变化趋势最为明显;冬眠期中大蟾蜍的内环境处于一个低钾、钠,高钙、氯的特定水平;此外,活动期中雌性大蟾蜍的血钙水平低于雄性的。以上这些离子浓度的变化均有其生理生态等方面的意义。  相似文献   

2.
肌酸激酶同工酶研究进展   总被引:1,自引:0,他引:1  
根掘肌酸激酶同工酶在人体内各种组织和器官中分布不同的特点,对肌酸激酶同工酶的测定在医学中得到了广泛应用。本文概述了各种肌酸激酶同工酶的分布、组成、物理化学性质、分离纯化步骤、测定方法和实际应用等方面的近年研究进展。  相似文献   

3.
体液平衡失调(脱水或水过多),临床上较常见测定患者血浆渗透压,就可能对细胞内、外液的渗透状态及细胞内液容量作出判断,有助于诊断及治疗。临床上一般多用测定血清钠的浓度来估计渗透压的水平。测定血清钠,近年来多用火焰光度计法,但需要有贵重的火焰光度计仪器设备,基层医疗单位多无此种仪器。生物科学上许多研究常常应用电导率的测定,测定血清电导率用于判断渗透压国內曾有过报道。  相似文献   

4.
在维持机体内环境稳态中,循环血液起着关键作用。血液成份的变化在疾病诊断与疗效判断中十分重要。因此,采用血清、血浆或全血,是一个涉及临床医疗与科研质量的重要问题。WHO于2002年邀请41位专家进行专题研讨,并发表了一个报告,比较详尽地评述了血清、不同抗凝剂制备的血浆和全血在常用临床检验中的应用,并介绍了各种血标本相关指标的稳定条件。近20年来,许多学在这一领域已进行了大量工作。虽然我国也有人开始注意这一问题,但还不够重视。例如,血糖测定,WHO推荐使用EDTA抗凝全血,肝素抗凝全血需谨慎应用;但明确指出不宜使用血清,否则测定值偏低。北美与欧洲很少采用血清测定血糖。但我国不少检验医学书籍仍然推荐使用血清,甚至在高等医学院校教材中推荐使用血清(浆)标本,将两视同相等。产生这些不妥的原因,主要与生理学和生物化学教学中长期强调血清是缺乏纤维蛋白原的血浆所致。因此,明确血清与血浆的重要差别是非常必要的。  相似文献   

5.
目的:观察动脉全血和静脉血清钾离子浓度结果的差异。方法:76例患者同时采集动脉抗凝血气血与静脉血,用丹麦生产RADIOMETER---ABL90的全自动血气分析仪和迈瑞公司生产的迈瑞BS-820全自动生化分析仪分别测定钾离子浓度,比较两组间的差异和相关性。结果:动脉全血和静脉血清的钾离子浓度差异有显著性(P<0.01),动脉全血的钾离子浓度明显低于静脉血清,并且动脉全血和静脉血清中钾离子浓度存在着一定的线性关系[1]。结论:动脉全血中钾离子浓度不能等同于静脉血清中的钾离子浓度,根据笔者推导的直线方程:静脉血清钾离子[K+]V=0.8×动脉全血钾离子[K+]A+1.36(mmol/L),在知道动脉全血血气分析中钾离子浓度时,可以大致推算出静脉血清钾离子浓度,临床医生可用以判断患者有无钾离子异常。[2]  相似文献   

6.
在病理情况下,特别是细胞损伤时,细胞内酶会释放到体液中,造成体液中酶量或酶活性的改变,酶可作为诊断指标来使用。与其他指标相比,酶具有更高的诊断特异性和灵敏度。临床上病毒感染所引起的传染性疾病很多,严重感染者可遗留后遗症甚至造成死亡。血清酶指标可以为病毒感染疾病的诊断、治疗及预后提供重要的参考价值。本研究就近年来国内外对病毒感染所造成血清酶活性的改变及临床运用作一综述。  相似文献   

7.
目的:比较不同血清浓度培养体系对表皮干细胞增殖分化的影响.方法:采用两步酶消化法和IV型胶原差速贴壁相结合的方法获得人原代表皮干细胞,分别以0%、5%、10%、15%和20%血清浓度的培养基在96孔板中进行培养.观察表皮干细胞形态,克隆形成及增殖的情况,应用四甲基偶氯唑蓝(MTT)比色法检测各组细胞存活和生长情况,分析量效和时效关系;持续传代培养细胞,每次传代的同时取适量细胞,用免疫细胞化学的方法进行表皮干细胞和表皮细胞相应标志物(K19、K14和K10)的测定.结果:表皮干细胞在各种血清浓度的培养基内均能形成克隆,增殖良好.用四甲基偶氮唑蓝(MTT)比色法测定,所得相同时间点各组OD值在统计学上没有差异(P>0.05),表皮干细胞生长速度各组间无差异.第1代表皮干细胞K19均有表达,而K14和K10表达均为阴性;其后高血清浓度(15%、20%)培养基中细胞较低血清浓度(0%、5%)先出现K14、K10蛋白的表达;培养至第10代是各组细胞均出现K10高表达,而K19、K14表达阴性.结论:在低血清浓度(0%、5%)的培养基中表皮干细胞生长良好,且能够相对较好保持表皮干细胞的特性.  相似文献   

8.
盐害是限制植物生长发育的重要环境因素, 对植物造成渗透胁迫和离子毒害。维持细胞及整株水平的Na+/K+平衡是植物重要的耐盐机制。目前, 已报道的高亲和性钾离子转运蛋白(HKT)具有钠、钾离子转运特性, 在植物体钠、钾离子长距离运输及分配过程中发挥重要作用。该文重点总结了淡土植物和盐土植物HKT蛋白的结构、功能及耐盐机理, 并对其在植物耐盐改良育种中的前景做出了展望。  相似文献   

9.
高效液相色谱法测定大鼠血清染料木素浓度   总被引:1,自引:0,他引:1  
目的:建立大鼠血清中染料木素浓度的HPLC测定方法.方法:大鼠血清以叔丁基甲醚萃取,萃取物用氮气吹干后,用甲醇溶解用于色谱分析.色谱条件:采用Thermo C18柱(250ram×4.6mm,5μm);以乙腈-0.02mol/L磷酸二氢钾(35:65,pH=4.3)为流动相;流速为1.0mL/min;检测波长为260hm;柱温为40℃;进样量为10μL.结果:染料木素最低检测浓度为0.01mg/L;标准曲线线性范围为0.01~10.00μg/mL(r=0.9998);相对回收率为(101.31±3.47)%;日内RSD与日间RSD均小于10.00%.结论:该方法简便、快速、灵敏度高,重现性及稳定性较好,适用于大鼠血清染料木素浓度测定和药代动力学的研究.  相似文献   

10.
蛇毒清胶囊对眼镜蛇咬伤患者血清CK、LDH、AST活性的影响   总被引:2,自引:1,他引:1  
黄彬  曾仲意  曲敬来  林申 《蛇志》2004,16(1):1-3
目的观察眼镜蛇咬伤后血清CK、LDH、AST活性的变化和蛇毒清胶囊对其的影响. 方法眼镜蛇咬伤2h内的患者120例,随机分为2个组,均给予常规治疗,治疗组加服蛇毒清胶囊,均以7天为1个疗程.分别于就诊时、咬伤后24h测定其血清酶学三项指标:CK、LDH、AST的活性,比较2组酶学的变化和临床疗效.结果2组患者在就诊时(伤后2h内)的酶学三项指标尚未出现明显异常,伤后24h三项指标均明显升高,对照组显著高于治疗组,治疗组疗效优于对照组(P<0.05).结论蛇毒清胶囊能抑制眼镜蛇咬伤患者血清CK、LDH、AST的升高,对眼镜蛇咬伤患者组织损伤有防治作用.  相似文献   

11.
Human serum albumin (HSA) or anti-human serum albumin (anti-HSA) yields a catalytic hydrogen wave at about -1.85V (vs Ag/AgCl) in 0.25M NH(3).H(2)O-NH(4)Cl (pH 8.58) buffer. When 1.0 x 10(-2)M K(2)S(2)O(8) is present, the catalytic hydrogen wave is further catalyzed, producing a parallel catalytic wave of hydrogen as catalyst in nature, termed the parallel catalytic hydrogen wave. The sensitivity of the parallel catalytic hydrogen wave is higher by two orders of magnitude than that of the catalytic hydrogen wave. Using the parallel catalytic hydrogen wave of anti-HSA or HSA in the presence of K(2)S(2)O(8), two sensitive methods for the determination of anti-HSA were developed. One is a direct determination based on the parallel catalytic hydrogen wave of anti-HAS itself, and the other is a homogeneous immunoassay based on measuring the decrease of the peak current of the parallel catalytic hydrogen wave of HSA after homogeneous immunoreaction of HSA with anti-HSA. In the direct determination, the second-order derivative peak current of the parallel catalytic hydrogen wave of anti-HSA itself is rectilinear to its titer in the range from 1:1.0 x 10(7) to 1:8.4 x 10(6). In the homogeneous immunoassay, the decrease in the second-order derivative peak current of the parallel catalytic hydrogen wave of HSA is linearly related to the added anti-HSA in the titer range from 1:3.0 x 10(7) to 1:6.0 x 10(6). These assays are highly sensitive and rapid in operation and can be used to evaluate such antigens and their antibodies as those that could yield the parallel catalytic hydrogen wave.  相似文献   

12.
Summary Necturus gallbladder epithelial cells regulate their volume after a change in solution osmolality. We determined the intracellular activities of Na, K and Cl when the mucosal bathing solution osmolality was increased 18% by the addition of mannitol. The gallbladder was mounted in a rapid flow chamber and punctured simultaneously with two single-barrelled microelectrodes. One electrode sensed membrane potential and the other was sensitive to the activity of Na, K or Cl. Cell volume measurements, made in previous studies utilizing quantitative light microscopy, indicated that hypertonicity of the mucosal bath first caused a cell shrinkage of 15% followed by volume readjustment. Some loss of Na, K and Cl was observed during shrinkage; subsequently during volume regulation, the intracellular quantities of all three ions increased. The loss of Na during the initial cell shrinkage could be blocked by ouabain and was therefore due to increased transport. K and Cl losses were probably related to the increase in their concentrations during shrinkage. The gain of Na, K and Cl during volume regulation was similar in magnitude to the loss of these solutes during cell shrinkage. The increase of Na, K and Cl during volume regulation accounted for about 60% of the increase of cell solutes during this period indicating that other solutes also contributed to the volume regulation response.  相似文献   

13.
NaCl胁迫对黄瓜幼苗体内K+、Na+和Cl-分布的影响   总被引:1,自引:0,他引:1  
采用营养液水培,以2个耐盐性不同的黄瓜品种为材料,研究了不同浓度NaCl处理下幼苗植株体内K 、Na 和Cl-在器官间的区域化分布及其吸收和运输特性的变化。结果表明:NaCl胁迫下,黄瓜植株体内K 含量下降,Na 和Cl-含量升高,变化幅度随NaCl浓度的升高而增大;不同器官间,茎中Na 和Cl-含量最高,上位叶中Na 和Cl-含量最低、K 含量下降幅度最小。与耐盐性较弱的“津春2号”相比,耐盐性较强的“长春密刺”根向茎运输的SK,Na值较高,根系对Na 的截留作用较强,茎向上位叶运输的SK,Na和SCl,Na值均较高,叶片中K 含量下降幅度较小,K/Na和Cl/Na比值均较高,功能叶中盐分离子尤其是Na 积累较少,植株生物量较高。说明根系对Na 的截留能力较强且向上位叶运输Na 的选择性较低,是“长春密刺”耐盐性较强的主要原因之一。  相似文献   

14.
The energy landscape of proteins is characterized by a hierarchy of substates, which give rise to conformational heterogeneity at low temperatures. In multiply spin-labeled membranous Na,K-ATPase, this heterogeneous population of conformations is manifest by strong inhomogeneous broadening of the electron paramagnetic resonance (EPR) line shapes and nonexponential spin-echo decays, which undergo a transition to homogeneous broadening and exponential relaxation at higher temperatures (previous study). In this study, we apply these EPR methods to small water-soluble proteins, of the type for which the existence of conformational substates is well established. Both α-helical and β-sheet aqueous proteins that are spin-labeled on a single cysteine residue display spin-echo decays with a single phase-memory time T2M and conventional EPR line shapes with predominantly homogeneous broadening, over a broad range of temperatures from 77 K to ∼ 250 K or higher. Above ∼ 200 K, the residual inhomogeneous broadening is reduced almost to zero. In contrast, both the proteins and the spin label alone, when in a glycerol-water mixture below the glass transition, display heterogeneity in spin-echo phase-memory time and a stronger inhomogeneous broadening of the conventional line shapes, similar to multiply spin-labeled membranous Na,K-ATPase below 200 K. Above 200 K (or the glass transition), a single phase-memory time and predominantly homogeneous broadening are found in both spin-label systems. The results are discussed in terms of solvent-mediated protein transitions, the ability of single spin-label sites to detect conformational heterogeneity, and the desirability of exploring multiple sites for proteins with the size and complexity of the Na,K-ATPase.  相似文献   

15.
The energy landscape of proteins is characterized by a hierarchy of substates, which give rise to conformational heterogeneity at low temperatures. In multiply spin-labeled membranous Na,K-ATPase, this heterogeneous population of conformations is manifest by strong inhomogeneous broadening of the electron paramagnetic resonance (EPR) line shapes and nonexponential spin-echo decays, which undergo a transition to homogeneous broadening and exponential relaxation at higher temperatures (previous study). In this study, we apply these EPR methods to small water-soluble proteins, of the type for which the existence of conformational substates is well established. Both α-helical and β-sheet aqueous proteins that are spin-labeled on a single cysteine residue display spin-echo decays with a single phase-memory time T2M and conventional EPR line shapes with predominantly homogeneous broadening, over a broad range of temperatures from 77 K to ∼ 250 K or higher. Above ∼ 200 K, the residual inhomogeneous broadening is reduced almost to zero. In contrast, both the proteins and the spin label alone, when in a glycerol-water mixture below the glass transition, display heterogeneity in spin-echo phase-memory time and a stronger inhomogeneous broadening of the conventional line shapes, similar to multiply spin-labeled membranous Na,K-ATPase below 200 K. Above 200 K (or the glass transition), a single phase-memory time and predominantly homogeneous broadening are found in both spin-label systems. The results are discussed in terms of solvent-mediated protein transitions, the ability of single spin-label sites to detect conformational heterogeneity, and the desirability of exploring multiple sites for proteins with the size and complexity of the Na,K-ATPase.  相似文献   

16.
The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interface between carriers and channels. In this paper, we review the interaction of alkali cations with glutamate transporters in terms of these diverse functions. We also present a model derived from electrostatic mapping of the predicted cation-binding sites in the X-ray crystal structure of the Pyrococcus horikoshii transporter GltPh and in its human glutamate transporter homologue EAAT3. Two predicted Na+-binding sites were found to overlap precisely with the Tl+ densities observed in the aspartate-bound complex. A novel third site predicted to favourably bind Na+ (but not Tl+) is formed by interaction with the substrate and the occluding HP2 loop. A fourth predicted site in the apo state exhibits selectivity for K+ over both Na+ and Tl+. Notably, this K+ site partially overlaps the glutamate-binding site, and their binding is mutually exclusive. These results are consistent with kinetic and structural data and suggest a plausible mechanism for the flux coupling of glutamate with Na+ and K+ ions.  相似文献   

17.
Sodium relations in Chenopodiaceae: a comparative approach   总被引:2,自引:0,他引:2  
Sodium relations of 15 species of Chenopodiaceae were studied in seedlings grown on quartz sand at 10 mol m?3 of sodium and potassium. Uptake of sodium and potassium into whole plants and shoots was followed over 2 weeks. High alkali ion uptake rates were found in all species. The apparent selectivity of alkali ion uptake showed a continuous variation between species, from nearly perfect sodium exclusion to negligible cation selection. K/Na ratios above 6 were found in the shoots of eight species. For most of these plants above ground sodium concentrations were highest in the hypocotyls. However, in Chenopodium hybridum (shoot K/Na = 10) and C. urbicum (shoot K/Na = 17) above ground sodium concentrations were lowest in hypocotyls and highest in leaves, as in those species accumulating larger amounts of sodium. These differences are discussed with respect to the underlying mechanisms of ion regulation.  相似文献   

18.
盐胁迫下嫁接茄的离子吸收和运输   总被引:5,自引:0,他引:5  
NaCl胁迫下嫁接苗根和叶中电解质渗透率、叶片Na 含量、Na /K 比值低于自根苗,其根中Na 含量、Na /K 则高于自根苗.  相似文献   

19.
The accessibility of the tryptophans in dog kidney Na,K-ATPase was studied with the technique of quenching by acrylamide. By use of a modified Stern-Volmer equation, fa, the effective fraction of tryptophans most exposed to quencher, and Ka, the effective quenching constant, were calculated. The direct Stern-Volmer plots are nonlinear under nondenaturing conditions, indicating that the tryptophan residues are unequally accessible to quencher. Modified Stern-Volmer plots revealed marked differences in the exposure of tryptophans in the E1 and E2 states. In the presence of Na or ADP, ligands that stabilize E1, these plots curve downward, indicating that the in addition to buried (unquenched) tryptophans, there is a heterogeneous class of tryptophans. In the presence of K or ouabain, conditions that favor E2, the modified Stern-Volmer plots are linear, consistent with a homogeneous population of tryptophans. Treatment with chymotrypsin to block the E1 to E2 transition results in a new set of quenching parameters which are unchanged with Na or K. Even after detergent denaturation (1% sodium dodecyl sulfate for 30 min), Stern-Volmer plots are nonlinear, and a significant fraction of tryptophan residues remain inaccessible to quencher. Denaturation with urea or guanidine HCl plus dithiothreitol increases the fraction of quenchable fluorescence even more, but still a small fraction, about 7-13%, is buried. The observed changes in exposure of the tryptophan residues would seem to account for the differences in intrinsic fluorescence seen on adding K and Na to Na,K-ATPase. The present results provide new evidence that a significant rearrangement of amino acid residues results from the E1 to E2 transition. Furthermore, a region of the molecule is inaccessible even after denaturation; this may correspond to highly hydrophobic stretches that are normally buried in the membrane.  相似文献   

20.
Most voltage-gated K(+) currents are relatively insensitive to extracellular Na(+) (Na(+)(o)), but Na(+)(o) potently inhibits outward human ether-a-go-go-related gene (HERG)-encoded K(+) channel current (Numaguchi, H., J.P. Johnson, Jr., C.I. Petersen, and J.R. Balser. 2000. Nat. Neurosci. 3:429-30). We studied wild-type (WT) and mutant HERG currents and used two strategic probes, intracellular Na(+) (Na(+)(i)) and extracellular Ba(2+) (Ba(2+)(o)), to define a site where Na(+)(o) interacts with HERG. Currents were recorded from transfected Chinese hamster ovary (CHO-K1) cells using the whole-cell voltage clamp technique. Inhibition of WT HERG by Na(+)(o) was not strongly dependent on the voltage during activating pulses. Three point mutants in the P-loop region (S624A, S624T, S631A) with intact K(+) selectivity and impaired inactivation each had reduced sensitivity to inhibition by Na(+)(o). Quantitatively similar effects of Na(+)(i) to inhibit HERG current were seen in the WT and S624A channels. As S624A has impaired Na(+)(o) sensitivity, this result suggested that Na(+)(o) and Na(+)(i) act at different sites. Extracellular Ba(2+) (Ba(2+)(o)) blocks K(+) channel pores, and thereby serves as a useful probe of K(+) channel structure. HERG channel inactivation promotes relief of Ba(2+) block (Weerapura, M., S. Nattel, M. Courtemanche, D. Doern, N. Ethier, and T. Hebert. 2000. J. Physiol. 526:265-278). We used this feature of HERG inactivation to distinguish between simple allosteric and pore-occluding models of Na(+)(o) action. A remote allosteric model predicts that Na(+)(o) will speed relief of Ba(2+)(o) block by promoting inactivation. Instead, Na(+)(o) slowed Ba(2+) egress and Ba(2+) relieved Na(+)(o) inhibition, consistent with Na(+)(o) binding to an outer pore site. The apparent affinities of the outer pore for Na(+)(o) and K(+)(o) as measured by slowing of Ba(2+) egress were compatible with competition between the two ions for the channel pore in their physiological concentration ranges. We also examined the role of the HERG closed state in Na(+)(o) inhibition. Na(+)(o) inhibition was inversely related to pulsing frequency in the WT channel, but not in the pore mutant S624A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号