首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebellar function in consolidation of a motor memory   总被引:9,自引:0,他引:9  
Attwell PJ  Cooke SF  Yeo CH 《Neuron》2002,34(6):1011-1020
Several forms of motor learning, including classical conditioning of the eyeblink and nictitating membrane response (NMR), are dependent upon the cerebellum, but it is not known how motor memories are stored within the cerebellar circuitry. Localized infusions of the GABA(A) agonist muscimol were used to target putative consolidation processes by producing reversible inactivations after NMR conditioning sessions. Posttraining inactivations of eyeblink control regions in cerebellar cortical lobule HVI completely prevented conditioning from developing over four sessions. In contrast, similar inactivations of eyeblink control regions in the cerebellar nuclei allowed conditioning to develop normally. These findings provide evidence that there are critical posttraining memory consolidation processes for eyeblink conditioning mediated by the cerebellar cortex.  相似文献   

2.
Female rats with maternal experience display a shorter onset of maternal responsiveness compared to those with no prior experience. This phenomenon called ‘maternal memory’ is critically dependent on the nucleus accumbens (NA) shell. We hypothesized that activation of OT receptors in the NA shell facilitates maternal memory. In Experiment 1, postpartum female rats given 1 hour of maternal experience were infused following the experience with either a high or low dose of an OT antagonist into the NA shell and tested for maternal behavior after a 10-day pup isolation period. Females receiving a high dose of the antagonist showed a significantly longer latency to exhibit full maternal behavior after the pup isolation period compared to females that received vehicle or a high dose of antagonist in a control region. In Experiment 2, postpartum female rats were infused with either a high or low dose of OT into the NA shell after a 15-minute maternal experience and tested for maternal behavior after a 10-day pup isolation period. There were no significant differences between the females infused with OT and females treated with a vehicle infused into the NA shell or with OT infused into the control region. One possible reason for a lack of facilitation is a floor effect, since females in the control groups displayed a rapid maternal response after the pup isolation period. These findings suggest that OT receptors, likely in combination with other neurotransmitters, in the NA shell play a role in the consolidation of maternal memory.  相似文献   

3.
4.

Key Message

When one of them was inhibited, the two pathways could compensate with each other to guarantee normal growth. Moreover, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside level.

Abstract

Ginsenosides, a kind of triterpenoid saponins derived from isopentenyl pyrophosphate (IPP), represent the main pharmacologically active constituents of ginseng. In plants, two pathways contribute to IPP biosynthesis, namely, the mevalonate pathway in cytosol and the non-mevalonate pathway in plastids. This motivates biologists to clarify the roles of the two pathways in biosynthesis of IPP-derived compounds. Here, we demonstrated that both pathways are involved in ginsenoside biosynthesis, based on the analysis of the effects from suppressing either or both of the pathways on ginsenoside accumulation in Panax ginseng hairy roots with mevinolin and fosmidomycin as specific inhibitors for the mevalonate and the non-mevalonate pathways, respectively. Furthermore, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside levels in the hairy roots. These results shed some light on the way toward better understanding of ginsenoside biosynthesis.  相似文献   

5.
Are children superior to adults in consolidating procedural memory? This notion has been tied to "critical," early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones.  相似文献   

6.
Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.  相似文献   

7.
We discuss very recent experiments with rodents addressing the idea that long-term memories initially depending on the hippocampus, over a prolonged period, become independent of it. No unambiguous recent evidence exists to substantiate that this occurs. Most experiments find that recent and remote memories are equally affected by hippocampus damage. Nearly all experiments that report spared remote memories suffer from two problems: retrieval could be based upon substantial regions of spared hippocampus and recent memory is tested at intervals that are of the same order of magnitude as cellular consolidation. Accordingly, we point the way beyond systems consolidation theories, both the Standard Model of Consolidation and the Multiple Trace Theory, and propose a simpler multiple storage site hypothesis. On this view, with event reiterations, different memory representations are independently established in multiple networks. Many detailed memories always depend on the hippocampus; the others may be established and maintained independently.  相似文献   

8.
9.
RecA and Rad51 proteins are essential for homologous recombination in Bacteria and Eukarya, respectively. Homologous proteins, called RadA, have been described for Archaea. Here we present the characterization of two RecA/Rad51 family proteins, RadA and RadB, from Pyrococcus furiosus. The radA and radB genes were not induced by DNA damage resulting from exposure of the cells to gamma and UV irradiation and heat shock, suggesting that they might be constitutively expressed in this hyperthermophile. RadA had DNA-dependent ATPase, D-loop formation, and strand exchange activities. In contrast, RadB had a very weak ATPase activity that is not stimulated by DNA. This protein had a strong binding affinity for DNA, but little strand exchange activity could be detected. A direct interaction between RadA and RadB was detected by an immunoprecipitation assay. Moreover, RadB, but not RadA, coprecipitated with Hjc, a Holliday junction resolvase found in P. furiosus, in the absence of ATP. This interaction was suppressed in the presence of ATP. The Holliday junction cleavage activity of Hjc was inhibited by RadB in the absence, but not in the presence, of ATP. These results suggest that RadB has important roles in homologous recombination in Archaea and may regulate the cleavage reactions of the branch-structured DNA.  相似文献   

10.
Integrating hippocampus and striatum in decision-making   总被引:3,自引:0,他引:3  
Learning and memory and navigation literatures emphasize interactions between multiple memory systems: a flexible, planning-based system and a rigid, cached-value system. This has profound implications for decision-making. Recent conceptualizations of flexible decision-making employ prospection and projection arising from a network involving the hippocampus. Recent recordings from rodent hippocampus in decision-making situations have found transient forward-shifted representations. Evaluation of that prediction and subsequent action-selection probably occurs downstream (e.g. in orbitofrontal cortex, in ventral and dorsomedial striatum). Classically, striatum has been identified as a crucial component of the less-flexible, incremental system. Current evidence, however, suggests that striatum is involved in both flexible and stimulus-response decision-making, with dorsolateral striatum involved in stimulus-response strategies and ventral and dorsomedial striatum involved in goal-directed strategies.  相似文献   

11.
Sorting of endocytosed EGF receptor (EGFR) to internal vesicles of multivesicular bodies (MVBs) depends on sustained activation and ubiquitination of the EGFR. Ubiquitination of EGFR is mediated by the ubiquitin ligase Cbl, being recruited to the EGFR both directly and indirectly through association with Grb2. Endosomal sorting of ubiquitinated proteins further depends on interaction with ubiquitin binding adaptors like Hrs. Hrs localizes to flat, clathrin-coated domains on the limiting membrane of endosomes. In the present study, we have investigated the localization of EGFR, Cbl and Grb2 with respect to coated and non-coated domains of the endosomal membrane and to vesicles within MVBs. Both EGFR, Grb2, and Cbl were concentrated in coated domains of the limiting membrane before translocation to inner vesicles of MVBs. While almost all Hrs was in clathrin-positive coats, EGFR and Grb2 in coated domains only partially colocalized with Hrs and clathrin. The extent of colocalization of EGFR and Grb2 with Hrs and clathrin varied with time of incubation with EGF. These results demonstrate that both clathrin-positive and clathrin-negative electron dense coats exist on endosomes and are involved in endosomal sorting of the EGFR.  相似文献   

12.
Activation of beta-adrenoreceptors induces cardiomyocyte hypertrophy. In the present study, we examined isoproterenol-evoked intracellular signal transduction pathways leading to activation of extracellular signal-regulated kinases (ERKs) and cardiomyocyte hypertrophy. Inhibitors for cAMP and protein kinase A (PKA) abolished isoproterenol-evoked ERK activation, suggesting that Gs protein is involved in the activation. Inhibition of Gi protein by pertussis toxin, however, also suppressed isoproterenol-induced ERK activation. Overexpression of the Gbetagamma subunit binding domain of the beta-adrenoreceptor kinase 1 and of COOH-terminal Src kinase, which inhibit functions of Gbetagamma and the Src family tyrosine kinases, respectively, also inhibited isoproterenol-induced ERK activation. Overexpression of dominant-negative mutants of Ras and Raf-1 kinase and of the beta-adrenoreceptor mutant that lacks phosphorylation sites by PKA abolished isoproterenol-stimulated ERK activation. The isoproterenol-induced increase in protein synthesis was also suppressed by inhibitors for PKA, Gi, tyrosine kinases, or Ras. These results suggest that isoproterenol induces ERK activation and cardiomyocyte hypertrophy through two different G proteins, Gs and Gi. cAMP-dependent PKA activation through Gs may phosphorylate the beta-adrenoreceptor, leading to coupling of the receptor from Gs to Gi. Activation of Gi activates ERKs through Gbetagamma, Src family tyrosine kinases, Ras, and Raf-1 kinase.  相似文献   

13.
杏仁复合体β受体参与条件性恐惧记忆   总被引:2,自引:0,他引:2  
Liu XQ  Li BM 《生理科学进展》2005,36(2):163-165
杏仁复合体是条件性恐惧记忆形成和储存的关键脑区。杏仁复合体β受体参与条件性恐惧记忆的巩固。β受体激活易化杏仁复合体内突触传递的长时程增强,增强条件性恐惧记忆的巩固;而阻断β受体则抑制杏仁复合体内突触传递的长时程增强,损害条件性恐惧记忆的巩固。  相似文献   

14.
Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.  相似文献   

15.
High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 μg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 μg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity.  相似文献   

16.
In eukaryotes, the final steps in both the regulated and constitutive secretory pathways can be divided into four distinct stages: (i) the 'approach' of secretory vesicles/granules to the PM (plasma membrane), (ii) the 'docking' of these vesicles/granules at the membrane itself, (iii) the 'priming' of the secretory vesicles/granules for the fusion process, and, finally, (iv) the 'fusion' of vesicular/granular membranes with the PM to permit content release from the cell. Recent work indicates that non-muscle myosin II and the unconventional myosin motor proteins in classes 1c/1e, Va and VI are specifically involved in these final stages of secretion. In the present review, we examine the roles of these myosins in these stages of the secretory pathway and the implications of their roles for an enhanced understanding of secretion in general.  相似文献   

17.
18.
Sun J  Jin T 《Cellular signalling》2008,20(1):219-229
Subjects with Type II diabetes mellitus are more vulnerable in developing colorectal tumors, suggesting that hyperinsulinemia may stimulate proto-oncogene expression, and the existence of crosstalk between insulin signaling and pathways that are involved in colorectal tumor formation. We show here that insulin stimulates cell proliferation and c-Myc expression in colon cancer cell lines HT29 and Caco-2, intestinal non-cancer cell line IEC-6, and primary fetal rat intestinal cell (FRIC) cultures. The effect of insulin was blocked by phosphoinositide-3 Kinase (PI3K) inhibition, but only partially attenuated by inhibition of Protein kinase B (PKB), indicating the existence of both PKB-dependent and -independent mechanisms. The PKB-dependent mechanism of insulin-stimulated c-Myc expression in HT29 cells was shown to involve the activation of mTOR in c-Myc translation. In the investigation of the PKB-independent mechanism, we found that insulin-induced nuclear translocation of beta-catenin (beta-cat), an effector of Wnt signaling. Furthermore, insulin stimulated the expression of TopFlash, a Wnt-responsive reporter gene. Finally, chromatin immunoprecipitation (ChIP) detected significant increases in the binding of beta-cat to two TCF binding sites of the human c-Myc promoter following insulin treatment. Our observations support the existence of crosstalk between insulin and Wnt signaling pathways, and suggest that the crosstalk involves a PKB-independent mechanism.  相似文献   

19.
Kainate receptors alter the excitability of mossy fiber axons and have been reported to play a role in the induction of long-term potentiation (LTP) at mossy fiber synapses in the hippocampus. These previous studies have relied primarily on the use of compounds whose selectivity is unclear. In this report, we investigate short- and long-term facilitation of mossy fiber synaptic transmission in kainate receptor knockout mice. We find that LTP is reduced in mice lacking the GluR6, but not the GluR5, kainate receptor subunit. Additionally, short-term synaptic facilitation is impaired in GluR6 knockout mice, suggesting that kainate receptors act as presynaptic autoreceptors on mossy fiber terminals to facilitate synaptic transmission. These data demonstrate that kainate receptors containing the GluR6 subunit are important modulators of mossy fiber synaptic strength.  相似文献   

20.
The aberrant, a morphological mutant of Hydra attenuata, has been shown to have altered inhibition properties(D. I. Rubin and H. R. Bode, 1982, Develop. Biol. 89, 316–331). Based on transplantation experiments, the inhibition gradient in the aberrant is steeper and higher near the head than that in the normal. Also, the amount of inhibition transmitted by the aberrant head is higher. Both epithelial cells and nerve cells have been implicated in the patterning process of hydra. The cell types involved in the altered inhibition properties of the aberrant were determined by making chimeras consisting of epithelial cells from one strain and nerve cells from the other. Experiments with these chimeras demonstrated that the epithelial cells were responsible for the altered inhibition gradient of the aberrant. In contrast, both the epithelial cells and the nerve cells were involved in the higher amount of inhibition transmitted by the aberrant head. Thus, both cell types are involved in this aspect of patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号