首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Autism spectrum disorders are severe psychiatric diseases commonly identified in the population. They are diagnosed during childhood and the etiology has been much debated due to their variations and complexity. Onset is early and characterized as communication and social interaction disorders and as repetitive and stereotyped behavior. Autistic disorders may occur together with various genetic and chromosomal diseases. Several chromosomal regions and genes are implicated in the predisposition for these diseases, in particular those with products expressed in the central nervous system. There are reports of autistic and mentally handicapped patients with submicroscopic subtelomeric alterations at the distal end of the long arm of chromosome 2. Additionally, there is evidence that alterations at 2q37 cause brain malformations that result in the autistic phenotype. These alterations are very small and not identified by routine cytogenetics to which patients are normally submitted, which may result in an underestimation of the diagnosis. This study aimed at evaluating the 2q37 region in patients with autistic disorders. Twenty patients were studied utilizing the fluorescence in situ hybridization technique with a specific probe for 2q37. All of them were also studied by the GTC banding technique to identify possible chromosomal diseases. No alterations were observed in the 2q37 region of the individuals studied, and no patient presented chromosomal diseases. This result may be due to the small sample size analyzed. The introduction of routine analysis of the 2q37 region for patients with autistic disorders depends on further studies.  相似文献   

3.
ObjectiveThe aim of our study was to assess the iodine status of Polish boys with severe autism compared to their healthy peers and evaluate the relationship between urinary iodine, thyroid hormones, body mass index and Autism Spectrum Disorder (ASD) symptomatology.Subjects and methodsTests were performed in 40 boys with ASD and 40 healthy boys, aged 2–17 from the same geographic region in Poland. Urinary iodine (UI), free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH), BMI, and individual symptoms measured by the Childhood Autism Rating Scale (CARS) were correlated.Validated ion chromatography method with pulsed amperometric detection was applied for the determination of urinary iodine after optimized alkaline digestion in a closed system assisted with microwaves.Results19 out of 40 children with ASD had mild to moderate iodine deficiency. Statistically significant lower levels of UI, fT3 and fT4 and higher levels of TSH were found in the autistic group when compared with the control group. Concentration of iodine in urine was negatively associated with clinician’s general impression for children between 11 and 17 years. Emotional response, adaptation to environmental change, near receptor responsiveness, verbal communication, activity level, and intellectual functioning are more associated with UI than other symptoms listed in CARS.ConclusionThe severity of certain symptoms in autism is associated with iodine status in maturing boys. Thyroid hormones were within normal reference ranges in both groups while urinary iodine was significantly lower in autistic boys suggesting that further studies into the nonhormonal role of iodine in autism are required.  相似文献   

4.
Z Kang  F Peng  T Ling 《Gene》2012,497(2):298-300
Since vascular risk factors commonly act for susceptibility to Alzheimer's disease (AD) and vascular dementia (VaD) by declining cognitive abilities, we conducted a genetic association study to identify their common underlying genetic factors. We selected single nucleotide polymorphisms (SNPs) which had been previously discovered for association with AD, and case and control associations of VaD were examined with the individual SNPs using 207 patients with VaD and 207 sex- and age-matched control subjects. As a result, no significant associations of susceptibility to VaD with 13 selected SNPs were observed even without employing a multiple test (P>0.05). This study suggests that genetics of VaD might be quite different from that of AD, and cautions should be taken especially when inferences about genetic factors are made with patients with mixed dementia.  相似文献   

5.
6.
7.
Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD risk.  相似文献   

8.
Autism spectrum disorders(ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants(CNVs), linkage regions, and micro RNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.  相似文献   

9.
Multiple osteochondromas (MO), a dominantly inherited genetic disorder, is characterized by the presence of multiple osteochondromas in the long bones. EXT1 and EXT2 are the causative genes in most MO patients. We have characterized 9 MO families and 1 sporadic case involving a total of 25 patients. The coding exons of EXT1 and EXT2 were screened in 10 probands affected with MO. In five of the 10 probands novel pathogenic mutations have been identified: two in EXT1 and three in EXT2. Four probands carried recurrent mutations and one proband had no detectable mutation. Our study extends the mutational spectrum in EXT1 and EXT2 and will facilitate the deep understanding of the pathophysiology of the disease.  相似文献   

10.
Autism spectrum disorders(ASD) are highly heterogeneous pediatric developmental disorders with estimated heritability more than 70%. Although the genetic factors in ASD are mainly unknown, a large number of gene mutations have been found, especially in genes involved in neurogenesis. The Neurexin-Neuroligin-Shank(NRXN-NLGN-SHANK) pathway plays a key role in the formation, maturation and maintenance of synapses, consistent with the hypothesis of neurodevelopmental abnormality in ASD. Presynaptic NRXNs interact with postsynaptic NLGNs in excitatory glutamatergic synapses. SHANK proteins function as core components of the postsynaptic density(PSD) by interacting with multiple proteins. Recently, deletions and point mutations of the SHANK1 gene have been detected in ASD individuals, indicating the involvement of SHANK1 in ASD. This review focuses on the function of SHANK1 protein, Shank1 mouse models, and the molecular genetics of the SHANK1 gene in human ASD.  相似文献   

11.

Background

Accumulating evidence suggests that dysregulation of the immune system is involved in the pathophysiology of autism spectrum disorders (ASD). The aim of the study was to explore immunological markers in peripheral plasma samples from non-medicated subjects with high-functioning ASD.

Methodology/Principal Findings

A multiplex assay for cytokines and chemokines was applied to plasma samples from male subjects with high-functioning ASD (n = 28) and matched controls (n = 28). Among a total of 48 analytes examined, the plasma concentrations of IL-1β, IL-1RA, IL-5, IL-8, IL-12(p70), IL-13, IL-17 and GRO-α were significantly higher in subjects with ASD compared with the corresponding values of matched controls after correction for multiple comparisons.

Conclusion/Significance

The results suggest that abnormal immune responses as assessed by multiplex analysis of cytokines may serve as one of the biological trait markers for ASD.  相似文献   

12.
Shi YR  Wu JY  Hsu YA  Lee CC  Tsai CH  Tsai FJ 《Genetic testing》2002,6(3):237-243
Hereditary multiple exostoses (HME) is an autosomal dominant disorder characterized by growth of benign bone tumors. This genetically heterozygous disease comprises three chromosomal loci: the EXT1 gene on chromosome 8q23-q24, EXT2 on 11p11-p13, and EXT3 on 19p. Both EXT1 and EXT2 have been cloned and defined as a new family of potential tumor suppressor genes in previous work. However, no studies have been conducted in the Taiwanese population. To determine if previous results can also be applied to the Taiwanese, we analyzed 5 Taiwanese probands with clinical features of HME: 1 of them is a sporadic case, and the others are familial cases. Linkage studies were performed in the familial cases before the mutation analysis to determine to which of the three EXT chromosomes these cases could be assigned. Our results showed that one proband is linked to the EXT1 locus and three are linked to the EXT2 locus; the sporadic case was subsequently found to involve EXT1. We then identified four new mutations that have not been found in other races: two in EXT1--frameshift (K218fsX247) and nonsense (Y468X) mutations and two in EXT2-missense (R223P) and nonsense (Y394X) mutations. Our results indicate that in familial cases, linkage analysis can prove useful for preimplantation genetic diagnosis.  相似文献   

13.
The androgen theory of autism proposes that autism spectrum conditions (ASC) are in part due to elevated fetal testosterone (FT) levels, which are positively correlated with a number of autistic traits and inversely correlated with social development and empathy. A medical questionnaire was completed by n=54 women with ASC, n=74 mothers of children with ASC, and n=183 mothers of typically developing children to test whether women with ASC have an increased rate of testosterone-related medical conditions, and to see whether mothers of children with ASC show similar abnormalities, as part of the 'broader autism phenotype'. Compared to controls, significantly more women with ASC reported (a) hirsutism, (b) bisexuality or asexuality, (c) irregular menstrual cycle, (d) dysmenorrhea, (e) polycystic ovary syndrome, (f) severe acne, (g) epilepsy, (h) tomboyism, and (i) family history of ovarian, uterine, and prostate cancers, tumors, or growths. Compared to controls, significantly more mothers of ASC children reported (a) severe acne, (b) breast and uterine cancers, tumors, or growths, and (c) family history of ovarian and uterine cancers, tumors, or growths. These results suggest current hormone abnormalities in women with ASC and their mothers. Direct investigations of serum testosterone levels and genetic susceptibility to high testosterone production or sensitivity in women with ASC would illuminate the origin of these conditions. The relationship between FT and current testosterone levels also needs to be clarified. The present results may be relevant to understanding the increased male risk to developing autism.  相似文献   

14.
Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning adolescents and adults with autism spectrum disorder (ASD) and mental- and chronological-age matched typically-developing (TD) individuals using a perceptual simultaneity paradigm. Visual simultaneity thresholds were lower in individuals with ASD compared to TD individuals, suggesting that autism may be characterised by increased parsing of temporal event-structure, with a decreased capability for integration over time. Lower perceptual simultaneity thresholds in ASD were also related to increased developmental communication difficulties. These results are linked to detail-focussed and local processing bias.  相似文献   

15.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview‐Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38–1.42, P < 0.00001), and genotypes were more similar within subgroups compared to the unsubgrouped dataset (Fst = 0.17 ± 0.0.0009). These results suggest that the subgroups recapitulate genetic etiology. Using the same approach in an independent dataset from the Autism Genome Project, we similarly identified two distinct subgroups of cases and confirmed this severity‐based dichotomy. We also observed evidence for genetic contributions to subgroups identified in the replication dataset. Our results provide more effective methods of phenotype definition that should increase power to detect genetic factors influencing risk for ASD .  相似文献   

16.
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by impaired social interaction, communication skills, and restricted and repetitive behavior. The genetic causes for autism are largely unknown. Previous studies implicate CACNA1C (L-type Ca(V)1.2) calcium channel mutations in a disorder associated with autism (Timothy syndrome). Here, we identify missense mutations in the calcium channel gene CACNA1H (T-type Ca(V)3.2) in 6 of 461 individuals with ASD. These mutations are located in conserved and functionally relevant domains and are absent in 480 ethnically matched controls (p = 0.014, Fisher's exact test). Non-segregation within the pedigrees between the mutations and the ASD phenotype clearly suggest that the mutations alone are not responsible for the condition. However, functional analysis shows that all these mutations significantly reduce Ca(V)3.2 channel activity and thus could affect neuronal function and potentially brain development. We conclude that the identified mutations could contribute to the development of the ASD phenotype.  相似文献   

17.
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.  相似文献   

18.
Autism is a neurodevelopmental disorder characterized by impairments in communication and reciprocal social interaction, coupled with repetitive behavior, which typically manifests by 3 years of age. Multiple genes and early exposure to environmental factors are the etiological determinants of the disorder that contribute to variable expression of autism-related traits. Increasing evidence indicates that altered fatty acid metabolic pathways may affect proper function of the nervous system and contribute to autism spectrum disorders. This review provides an overview of the reported abnormalities associated with the synthesis of membrane fatty acids in individuals with autism as a result of insufficient dietary supplementation or genetic defects. Moreover, we discuss deficits associated with the release of arachidonic acid from the membrane phospholipids and its subsequent metabolism to bioactive prostaglandins via phospholipase A(2)-cyclooxygenase biosynthetic pathway in autism spectrum disorders. The existing evidence for the involvement of lipid neurobiology in the pathology of neurodevelopmental disorders such as autism is compelling and opens up an interesting possibility for further investigation of this metabolic pathway.  相似文献   

19.
赵晖  张永超  张永清 《遗传》2015,37(9):845-854
自闭症谱系障碍(Autism spectrum disorder, ASD)是一类常见神经发育疾病,以社会交往障碍、刻板重复行为与狭隘的兴趣为主要临床特征。在过去40年间,ASD患病率呈不断上升趋势,因而日益受到人们关注。近年来由于大规模外显子测序的应用,发现了许多新的ASD易感基因。这些易感基因富集在几个共同的遗传信号通路中,参与突触形成和染色质重构等。最新的动物模型研究表明,ASD的发病机制包括神经突触可塑性异常和神经回路兴奋性-抑制性平衡紊乱。本文从ASD遗传病因的高度异质性、众多致病基因突变影响的共同生物学过程以及遗传诊断方法和药物研发的进展等几个方面进行了综述,以期帮助人们深入了解ASD的遗传基础和转化研究现状。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号