首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological and functional alterations in astrocytic glia are often found in epileptic syndromes, although the exact role of astrocytes in epilepsy is poorly understood. During calcium imaging of epileptiform events in juvenile neocortical slices we previously discovered cells with spontaneous oscillations in their intracellular free calcium concentration ([Ca(2+)](i)). We have now characterized these oscillations using two in vitro models of epilepsy and find that they are produced by astrocytes. Astrocytic oscillations are widespread throughout the imaged territories, are remarkably regular and have long periods, averaging 100 s, which become shorter during development. Astrocytic oscillations are uncorrelated among themselves and with epileptiform events, are blocked by internal release antagonists and are stimulated by caffeine. Astrocytic calcium oscillations could mediate reactive astrogliosis, contribute to the pathogenesis of chronic epileptic syndromes, and be used as a diagnostic test for epileptic tissue.  相似文献   

2.
Morphological and functional alterations in astrocytic glia are often found in epileptic syndromes, although the exact role of astrocytes in epilepsy is poorly understood. During calcium imaging of epileptiform events in juvenile neocortical slices we previously discovered cells with spontaneous oscillations in their intracellular free calcium concentration ([Ca2+]i). We have now characterized these oscillations using two in vitro models of epilepsy and find that they are produced by astrocytes. Astrocytic oscillations are widespread throughout the imaged territories, are remarkably regular and have long periods, averaging 100 s, which become shorter during development. Astrocytic oscillations are uncorrelated among themselves and with epileptiform events, are blocked by internal release antagonists and are stimulated by caffeine. Astrocytic calcium oscillations could mediate reactive astrogliosis, contribute to the pathogenesis of chronic epileptic syndromes, and be used as a diagnostic test for epileptic tissue. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 45–55, 2002  相似文献   

3.
Experimental research over the past decade has supported the critical role of astrocytes activated by different types of injury and the pathophysiological processes that underlie the development of epilepsy. In both experimental and human epileptic tissues astrocytes undergo complex changes in their physiological properties, which can alter glio-neuronal communication, contributing to seizure precipitation and recurrence. In this context, understanding which of the molecular mechanisms are crucially involved in the regulation of glio-neuronal interactions under pathological conditions associated with seizure development is important to get more insight into the role of astrocytes in epilepsy.  相似文献   

4.
蝎毒对癫痫敏感性和海马GFAP释放的影响   总被引:8,自引:2,他引:8  
目的和方法 :本工作用海人酸癫痫模型 ,通过对癫痫大鼠蝎毒治疗后行为变化及脑内胶质原纤维酸性蛋白(GFAP)免疫反应活性的检测 ,对蝎毒抗癫痫反复发作的相关脑区及其机制做以初步探讨。结果 :癫痫大鼠蝎毒治疗三周后 ,能明显减少癫痫发作的例数 ,减轻癫痫发作的程度 ,使发作的潜伏期延长 (P <0 .0 5 )。免疫细胞化学的实验显示 ,蝎毒抗癫痫反复发作的相关脑区是海马。 8例蝎毒治疗的大鼠与实验对照组相比 ,有 6例背侧海马GFAP免疫染色明显减轻 ,未见星形胶质细胞增生 ;CA1区无明显神经元缺失 ;而且与空白对照组相比无显著差异。结论 :癫痫大鼠蝎毒治疗三周后 ,能明显减轻癫痫发作的行为 ,抑制海马星形胶质细胞的增生肥大 ,减轻海马神经元受损的程度。蝎毒抑制海马星形胶质细胞增生很可能是蝎毒抗癫痫反复发作的重要机制之一。  相似文献   

5.
In this review we summarize published data on the involvement of glial cells in molecular mechanisms underlying brain plastic reorganization in epilepsy. The role of astrocytes as glial elements in pathological plasticity in epilepsy is discussed. Data on the involvement of aquaporin-4 in epileptogenic plastic changes and on participation of microglia and extracellular matrix in dysregulation of synaptic transmission and plastic remodeling in epileptic brain tissue are reviewed.  相似文献   

6.
癫痫发作敏感大鼠前深梨状皮层T区神经病理观察   总被引:5,自引:0,他引:5  
目的和方法:采用颞叶癫痫红藻氨酸(kainic acid,KA)模型,制备癫痫发作敏感大鼠,并分别以硫瑾染色和GFAP(神经胶质原纤维酸性蛋白,glial fibrilary acidic protein)免疫组化方法检测前深梨状皮层T区(area tempestas,AT)内神经元损伤及星形胶质细胞增生情况,并与经蝎毒(scorpion venom,SV)处理后癫痫发作敏感性明显降低的大鼠进行比较。结果:与对照组比较,癫痫敏感动物前深梨状皮层T区锥体细胞数目明显减少,GFAP免疫反应阳性星形胶质细胞数目明显增加,染色强度明显增强,(P<0.05)以剂量为100mg/kg/日的蝎毒给予动物连续灌胃三周,可明显降低其癫痫发作敏感性(P<0.05),而脑内梨状皮层T区锥体细胞脱失减轻,GPAP免疫反应活性未见明显增强。结论:推测梨状皮层T区硬化(神经元脱失,星形胶质细胞增生肥大)很可能是癫痫发作敏感性长期存在的重要原因。  相似文献   

7.
In the present study, we analyzed expressions of tandem of P domains in a Weak Inwardly rectifying K+ channel (TWIK)-related Acid-Sensitive K+ (TASK) channel-1 and -3 in the hippocampus of patients with temporal lobe epilepsy (TLE) and in rat model. In the control human subjects, TASK-1, and -3 immunoreactivity was observed in pyramidal neurons and dentate granule cells. In TLE patients, TASK-1 and -3 immunoreactivity was rarely observed in neurons. However, TASK-1 immunoreactivity was observed in astrocytes, and TASK-3 immunoreactivity was detected in both astrocytes and microglia. In the rat hippocampus, TASK-1 immunoreactivity was observed in astrocytes within normal and epileptic hippocampus. The alterations in TASK-3 immunoreactivity in the rat hippocampus were similar to those in the human hippocampus. These findings reveal that TASK-1 and -3 are differentially expressed in the normal and epileptic hippocampus, and suggest that TASK channels may contribute to the properties of the epileptic hippocampus.  相似文献   

8.
为了考察miR-103a对癫痫大鼠海马组织星形胶质细胞活化的影响。本研究通过腹腔注射氯化锂和毛果芸香碱诱导癫痫大鼠模型,对大鼠脑室内注射miR-103a抑制剂来敲低miR-103a的表达;采用免疫组织化学染色检测大鼠海马组织中胶质纤维酸性蛋白(GFAP)的阳性表达;采用RT-qPCR和Western blotting方法检测大鼠海马组织中miR-103a、脑源性神经营养因子(BDNF)、GFAP、TNF-α和IL-6的m RNA和蛋白表达;苏木精-伊红(HE)染色评价海马组织病变程度;Nissl染色检测神经元存活情况;TUNEL染色检测神经元的凋亡。结果显示,癫痫大鼠海马组织中miR-103a被上调。下调miR-103a抑制癫痫大鼠海马组织中GFAP的mRNA和蛋白表达,且抑制癫痫大鼠海马神经元的病理损伤,但能促进癫痫大鼠海马神经元的存活并抑制其凋亡。此外,下调miR-103a还抑制癫痫大鼠海马组织中IL-6和TNF-α的表达,并促进癫痫大鼠海马组织中BDNF的表达。本研究表明,靶向沉默miR-103a可以抑制癫痫大鼠海马组织中星形胶质细胞的活化并改善神经元的病理损伤。  相似文献   

9.
Epilepsy is characterized by the abnormal activation of neurons in the cerebral cortex, but the molecular and cellular mechanisms contributing to the development of recurrent seizures are largely unknown. Recently, the critical involvement of astrocytes in the pathophysiology of epilepsy has been proposed. However, the nature of plastic modulations of astrocytic proteins in the epileptic cortex remains poorly understood. In this study, we utilized the zero magnesium in vitro model of epilepsy and examined the potential molecular changes of cortical astrocytes, focusing specifically on endfeet, where specialized biochemical compartments exist. We find that the continuous epileptic activation of neurons for 1 h decreases the expression level of β-dystroglycan (βDG) in acute cortical brain slices prepared from mice. This change is completely abolished by the pharmacological blockade of NMDA-type glutamate receptors as well as by matrix metalloproteinase inhibitors. Consistent with the highly specialized localization of βDG at astrocytic endfeet, where it plays a pivotal role in anchoring endfeet-enriched proteins in astrocytes, the down-regulation of βDG is accompanied by a decrease in the expression of AQP4 but not laminin. Importantly, this down-regulation of βDG persists for at least 1 h, even after the apparent recovery of neuronal activation. Finally, we show that the down-regulation of βDG is associated with the dysfunction of the endfeet at the blood-brain interface as a diffusion barrier. These results suggest that the sustained down-regulation of βDG leads to dysfunctions of astrocytic endfeet in the epileptic cerebral cortex and may contribute to the pathogenesis of epilepsy.  相似文献   

10.
Since astrocytes may sense and respond to neuronal activity these cells are now considered important players in brain signaling. Astrocytes form large gap junction coupled syncytia allowing them to clear the extracellular space from K+ and neurotransmitters accumulating during neuronal activity, and redistribute it to sites of lower extracellular concentrations. Increasing evidence suggests a crucial role for dysfunctional astrocytes in the etiology of epilepsy. Notably, alterations in expression, localization and function of astroglial K+ channels as well as impaired K+ buffering was observed in specimens from patients with pharmacoresistant temporal lobe epilepsy and in chronic epilepsy models. Altered astroglial gap junction coupling has also been reported in epileptic tissue which, however, seems to play a dual role: (i) junctional coupling counteracts hyperactivity by facilitating clearance of elevated extracellular K+ and glutamate while (ii) it also provides a pathway for energetic substrates and fuels neuronal activity. Dysfunctional astrocytes should be considered promising targets for new therapeutic strategies.  相似文献   

11.
Clasmatodendrosis is an irreversible astroglial degenerative change, which includes extensive swelling and vacuolization of cell bodies and disintegrated and beaded processes. This study was designed to elucidate whether clasmatodendrosis may be one of the autophagy-related degeneration of astrocytes. In this study, clasmatodendritic astrocytes were observed only in the stratum radiatum in the CA1 region. Vacuoles in clasmatodendritic astrocytes showed LAMP-1 immunoreactivity. In addition, both LC3-II and Beclin-1 expression were detected in most of clasmatodendritic astrocytes as well as a few non-vacuolized astrocytes. Clasmatodendritic astrocytes also showed p65/RelA-Ser529 phosphorylation in the nuclei. The neutralization of TNF-α by sTNFp55R infusion reduced clasmatodendritic astrocytes with nuclear p65/RelA-Ser529 phosphorylation. Therefore, these findings suggest that clasmatodendrosis may be autophagic astroglial death in response to epileptic seizures through TNF-α-mediated p65/RelA-Ser529 phosphorylation.  相似文献   

12.
目的:检测鞘氨醇激酶1 (SphK1)和1-磷酸鞘氨醇受体2 (S1PR2) 在癫痫大鼠海马中的表达,探讨SphK1和S1PR2在癫痫中的作用机制。方法:成年雄性SD大鼠108只,随机分为对照(Control)组(n=48)和癫痫(PILO)组(n=60)。癫痫组腹腔注射氯化锂(127 mg/kg),18~20 h后注射匹罗卡品,首剂量为30 mg/kg,发作<IV级的大鼠重复注射匹罗卡品(10 mg/kg);对照组给予等剂量的生理盐水代替匹罗卡品。根据造模后观察时间和行为学改变,随机分为3个大组,6个亚组:急性期组(E6 h、E1 d、E3 d)、潜伏期组(E7 d)和慢性期组(E30 d、E56 d),每个亚组中对照大鼠和癫痫大鼠各8只。每组取4只大鼠麻醉取海马,另4只取大脑组织。运用Western blot检测SphK1、S1PR2在大鼠海马组织中的表达变化,免疫荧光检测星形胶质细胞活化增生情况及SphK1、S1PR2在星形胶质细胞中的定位表达。结果:与Control组比较,SphK1在造模后急性期(E3 d)、潜伏期(E7 d)和慢性期(E30 d、E56 d)海马中的表达均明显升高(P<0.05或P<0.01);S1PR2在急性期(E3 d)、潜伏期(E7 d)和慢性期(E30 d、E56 d)海马组织中的表达均明显下降(P<0.05或P<0.01);癫痫大鼠(E7 d)海马星形胶质细胞活化、增生明显(P<0.05),SphK1和S1PR2在E7d的表达到位为海马星形胶质细胞中。结论:SphK1和S1PR2可能通过调控海马星形胶质细胞活化增生和影响神经元兴奋性参与了癫痫的发病。  相似文献   

13.
In postnatal developing optic nerves, astrocytes organize their processes in a cribriform network to group axons into bundles. In neonatal rat optic nerves in vivo, the active form of EGFR tyrosine kinase is abundantly present when the organization of astrocytes and axons is most actively occurring. Blocking activity of EGFR tyrosine kinase during the development of rat optic nerves in vivo inhibits astrocytes from extending fine processes to surround axons. In vitro, postnatal optic nerve astrocytes, stimulated by EGF, organize into cribriform structures which look remarkably like the in vivo structure of astrocytes in the optic nerve. In addition, when astrocytes are co-cultured with neonatal rat retinal explants in the presence of EGF, astrocytes that are adjacent to the retinal explants, re-organize to an astrocyte-free zone into which neurites grow out from the retinal tissue. We hypothesize that in the developing optic nerve, EGFR activity directs the formation of a histo-architectural structure of astrocytes which surrounds axons and provides a permissive environment for axon development.  相似文献   

14.
Mechanisms of astrocyte-directed neurite guidance   总被引:5,自引:0,他引:5  
Astrocytes have recently become better recognized as playing vital roles in regulating the patterning of central nervous system neurites during development and following injury. In general, astrocytes have been shown to be supportive of neurite extension, but alterations in the biochemical properties of astrocytes in particular areas during development and in gliotic tissue may act to confine neurite outgrowth and thus provide guidance cues. In vivo studies indicate that restrictive astrocytes function through their altered expression of specific extracellular matrix molecules, including tenascin, chondroitin, and keratan sulfate proteoglycans. In addition, several in vitro models suggest that other cell surface molecules are utilized by restrictive astrocytes to direct neurite trajectories. Received: 5 May 1997 / Accepted: 6 June 1997  相似文献   

15.
16.
An astrocytic basis of epilepsy   总被引:23,自引:0,他引:23  
Hypersynchronous neuronal firing is a hallmark of epilepsy, but the mechanisms underlying simultaneous activation of multiple neurons remains unknown. Epileptic discharges are in part initiated by a local depolarization shift that drives groups of neurons into synchronous bursting. In an attempt to define the cellular basis for hypersynchronous bursting activity, we studied the occurrence of paroxysmal depolarization shifts after suppressing synaptic activity using tetrodotoxin (TTX) and voltage-gated Ca(2+) channel blockers. Here we report that paroxysmal depolarization shifts can be initiated by release of glutamate from extrasynaptic sources or by photolysis of caged Ca(2+) in astrocytes. Two-photon imaging of live exposed cortex showed that several antiepileptic agents, including valproate, gabapentin and phenytoin, reduced the ability of astrocytes to transmit Ca(2+) signaling. Our results show an unanticipated key role for astrocytes in seizure activity. As such, these findings identify astrocytes as a proximal target for the treatment of epileptic disorders.  相似文献   

17.
Glutaminase (GA) in mammalian tissues occurs in three isoforms: LGA (liver-type), KGA (kidney-type) and GAC (a KGA variant). Our previous study showed that human malignant gliomas (WHO grades III and IV) lack expression of LGA mRNA but are enriched in GAC mRNA relative to KGA mRNA. Here we analyzed the expression of mRNAs coding for the three isoforms in the biopsy material derived from other central nervous system tumors of WHO grades I–III. Non-neoplastic resective epileptic surgery samples served as control, as did cultured rat astrocytes and neurons. The GAC mRNA/KGA mRNA expression ratio was as a rule higher in the neoplastic than in control tissues, irrespective of the cell type dominating in the tumor or tumor malignancy. LGA mRNA expression was relatively very low in cultured astrocytes, and very low to absent in astrocytoma pilocyticum, ependymoma and subependymal giant cell astrocytoma (SEGA), tumors of astrocytic origin. LGA mRNA expression was almost as high as that of KGA and GAC mRNA in cultured neurons and epileptic surgery samples which were enriched in neurons. LGA mRNA was also relatively high in ganglioglioma which contains a discernable proportion of neuronal cells, and in oligodendroglioma. The results show that low expression of LGA mRNA is a feature common to normal astrocytes and astroglia-derived tumor cells or ependymomas and can be considered as a cell-type, rather than a malignancy marker.  相似文献   

18.
The aim of this study is to investigate the effects of long-chain noncoding RNA plasmacytoma variant translocation 1 (PVT1) on the activation of astrocytes and the expression of brain-derived neurotrophic factor (BDNF) in hippocampus tissues of epileptic rats. The epilepsy rat model was induced by intraperitoneal injection of lithium chloride–pilocarpine. Successfully modeled rats were grouped, and their spatial learning and memory, neuronal loss, number of TdT-mediated dUTP nick labeling (TUNEL)-positive cells, and the expression of cleaved-caspase-3, pro-caspase-3, Bax, Bcl-2, GFAP, BDNF, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, axin, and cyclin D1 in hippocampus tissues were evaluated. Increased expression of PVT1 was found in hippocampus tissues of epileptic rats. Silencing of PVT1 improved spatial learning and memory, decreased neuronal loss, decreased the number of TUNEL-positive cell, decreased the expression of cleaved-caspase-3 and Bax while increased pro-caspase-3 and Bcl-2 expression, decreased the expression of GFAP, increased the expression of BDNF, decreased the expression of TNF-α, IL-1β, and IL-6, and decreased the expression of axin and cyclin D1 in hippocampus tissues in epileptic rats. Our study provides evidence that the inhibition of PVT1 may decrease the loss of neurons, inhibit the activation of astrocytes, and increase the expression of BDNF in hippocampus by downregulating the Wnt signaling pathway.  相似文献   

19.
目的探索一种快捷、简便、稳定的染色方法显示脑组织内纤维性星形胶质细胞。方法取猫、家兔、大鼠和豚鼠的大脑组织,部分组织采用传统的Cajal金升汞法制片。部分组织采用改良Cajal金升汞法制片。结果与传统Cajal金升汞法比,应用改良Cajal金升汞染色法,缩短了制片时间,纤维性星形胶质细胞染色均匀,结构清晰,胶质细胞纤维显现明显,分枝光滑,较长突起末端膨大的脚板终止于血管壁上。结论应用改良后的Cajal金升汞法染色显示纤维性星形胶质细胞效果明显优于传统Cajal金升汞法。  相似文献   

20.
Comparative ultrastructural studies were performed on the development of Junín virus in mouse brain and in cerebellum explants and brain monolayers of the same animal. In mouse brain, neurons and astrocytes released virus particles by a budding mechanism identical to that previously described for this virus. In the neurons, the viral multiplication took place in the perikarion as well as in the cytoplasmic processes, including areas near synapses. Viral particles were observed emerging from pericapillary neurons and astrocytes. In the explants, the budding also occurred in neurons and astrocytes. In the monolayers, however, the virus originated in astrocytes and cells of fibroblastic appearance, which were the two cell types that developed in this substrate. These results indicate that the characteristics of the development of Junín virus in mouse brain are faithfully reproduced in cerebellum explants from the same animal, thus allowing some extrapolation of data from one system to the other. The explant proved to be a better model than the monolayer, not only because it reproduced the structural complexity of nervous tissue better, but also because it contains neurons and astrocytes, i.e., the two cell types that release the virus in the in vivo system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号