首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant nematodes are major pests of agriculture. Transgenic plant technology has been developed based on the use of proteinase inhibitors as nematode anti-feedants. The approach offers prospects for novel plant resistance and reduced use of environmentally damaging nematicides. A modified rice cystatin, Oc-IΔD86, expressed as a transgene in Arabidopsis thaliana , has a profound effect on the size and fecundity of females for both Heterodera schachtii (beet-cyst nematode) and Meloidogyne incognita (root-knot nematode). No females of either species achieved the minimum size they require for egg production. Ingestion of Oc-IΔD86 from the plant was correlated with loss of cysteine proteinase activity in the intestine thereby suppressing normal growth, as required of an effective anti-feedant plant defence.  相似文献   

2.
An approach based on image analysis that enables rapid collection and analysis of nematode size and shape during growth is reported. This technique has been applied to assess Meloidogyne incognita and Globodera pallida during their development over 35 and 42 days, respectively, on transgenic tomato roots expressing the wild-type rice cystatin Oc-I or an engineered variant, Oc-IAD86. Morphometric values were established that subdivided enlarged saccate females from other life stages. Analysis of this data subset indicates that the size of females and the frequency with which they parasitize roots expressing a cystatin are reduced. Results also demonstrate that cystatins can influence the growth of G. pallida prior to the adult stage. Similar image analysis procedures should be generally applicable to the study of host status or erivironmental factors that influence growth rates of plant-parasitic nematodes.  相似文献   

3.
Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.  相似文献   

4.
5.
6.
Constructs based on a cysteine proteinase inhibitor (cystatin) from sunflower and a protein engineered variant of a rice cystatin (Oc-ID86) conferred similar levels of resistance on potato plants to Globodera spp as chicken egg white cystatin (CEWC) under the control of CaMV35S. The level of resistance on challenge by 6.5 viable eggs Globodera spp g–1 soil in a small scale field trial was similar to that provided by the natural partial resistance of cv. Sante. PCR of an internal transcribed spacer region of the ribosomal cistron of the nematode genome established that the challenging population was a mixture of G. pallida and G. rostochiensis with no evidence of a differential effect of the transgenic resistance on the reproductive success of the two species. Transformation of Sante and the South American cultivar Maria Huanca with CaMV35S/CEWC raised the status of both cultivars from partial to full resistance in this study. The results establish the potential of plant cystatins and demonstrate an additive effect of expressing CEWC with natural resistance genes.  相似文献   

7.
Abstract. Net photosynthesis and transpiration rates of potato plants, grown in pots in the greenhouse, were measured at various light irradiances and ambient CO2 concentrations, 3d after inoculation with second stage juveniles of Globodera pallida. Gas exchange rates, both in darkness and in light, and the initial light use efficiency were strongly reduced by nematodes. Stomatal conductance of infected plants was lower than that of control plants and showed little response to decreasing ambient CO2 concentration. The maximum internal CO2 concentration of infected plants was lower than that of control plants. Globodera pallida reduced photosynthesis also by apparent non-stomatal effects.
The effects of G. pallida on gas exchange rates are similar to the effects of abscisic acid in the transpiration stream and of abiotic stresses in the root environment. Apparently, there is a general response of plant roots to adverse conditions. The reduction of photosynthesis may be an important factor in yield reduction by potato cyst nematodes.  相似文献   

8.
The expression patterns of three promoters preferentially active in the roots of Arabidopsis thaliana have been investigated in transgenic potato plants in response to plant parasitic nematode infection. Promoter regions from the three genes, TUB-1, ARSK1 and RPL16A were linked to the GUS reporter gene and histochemical staining was used to localize expression in potato roots in response to infection with both the potato cyst nematode, Globodera pallida and the root-knot nematode, Meloidogyne incognita. All three promoters directed GUS expression chiefly in root tissue and were strongly up-regulated in the galls induced by feeding M. incognita. Less activity was associated with the syncytial feeding cells of the cyst nematode, although the ARSK1 promoter was highly active in the syncytia of G. pallida infecting soil grown plants. Transgenic potato lines that expressed the cystatin OcIDeltaD86 under the control of the three promoters were evaluated for resistance against Globodera sp. in a field trial and against M. incognita in containment. Resistance to Globodera of 70 +/- 4% was achieved with the best line using the ARSK1 promoter with no associated yield penalty. The highest level of partial resistance achieved against M. incognita was 67 +/- 9% using the TUB-1 promoter. In both cases this was comparable to the level of resistance achieved using the constitutive cauliflower mosaic virus 35S (CaMV35S) promoter. The results establish the potential for limiting transgene expression in crop plants whilst maintaining efficacy of the nematode defence.  相似文献   

9.
The great majority of lifespan-augmenting mutations were discovered in the nematode Caenorhabditis elegans . In particular, genetic disruption of insulin-like signaling extends longevity 1.5- to 3-fold in the nematode, and to lesser degrees in other taxa, including fruit flies and mice. C. elegans strains bearing homozygous nonsense mutations in the age-1 gene, which encodes the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3KCS), produce progeny that were thought to undergo obligatory developmental arrest. We now find that, after prolonged developmental times at 15–20 °C, they mature into extremely long-lived adults with near-normal feeding rates and motility. They survive to a median of 145–190 days at 20 °C, with nearly 10-fold extension of both median and maximum adult lifespan relative to N2DRM, a long-lived wild-type stock into which the null mutant was outcrossed. PI3K-null adults, although a little less thermotolerant, are considerably more resistant to oxidative and electrophilic stresses than worms bearing normal or less long-lived alleles. Their unprecedented factorial gains in survival, under both normal and toxic environments, are attributed to elimination of residual and maternally contributed PI3KCS or its products, and consequent modification of kinase signaling cascades.  相似文献   

10.
The mechanism of glutamine transport at the plasma membrane of sink tissue cells was investigated using isolated plasma membrane vesicles from roots of Ricinus communis L. var. sanguineous . Glutamine transport was found to be driven by both the pH gradient (ΔpH) and a membrane potential (ΔΨ) (alkaline and negative internal), which were created artificially across the plasma membrane. Glutamine wus accumulated 15–20-fold in the presence of both a ΔpH and Δ Ψ . There appeared to be a direct pH effect on Δ PS -driven transport, as a higher rate of transport was observed at pH 5.5 than at pH 7.5. The ΔpH +Δ Ψ -driven transport showed saturation kinetics with a Km of 287 μ M . Altering the membrane potential changed the Vmax but had no effect on the Km of glutamine transport. These results are consistent with the presence of a proton-coupled, carrier-mediated system for glutamine uptake in Ricinus roots. A range of protein modifiers and transport inhibitors had limited effects on glutamine transport: highest inhibition uas observed with cytochalasin D. When glutamine transport was compared in plasma membrane vesicles isolated from the root lips of Ricinus and from the remainder of the root tissue a lower level of transport was observed in the root tips. A method for the solubilization and reconstitution of glutamine transport activity using the detergent CHAPS is also described.  相似文献   

11.
Mebendazole, trichlorfon, and a combination of these two drugs were evaluated for anthelmintic properties against the external monogenetic trematodes of fish, Gyrodactylus elegans and Dactylogyrus vastator . Mebendazole effectively removed G. elegans after a 24-h. exposure to 0·01 mg l-1, but it had no effect on D. vastator up to 2·0 mg l-1. Trichlorfon was 95% effective on D. vastator between 0·4 and 1·6 mg l-1 after a 24-h exposure, but it had no effect on G. elegans up to 2·0 mg l-1. A combination of mebendazole at 0·4 mg l-1 and trichlorfon at 1·8mgl-1 was 100% effective on both parasites. Trichlorfon appeared to inhibit the action of mebendazole on G. elegans , but mebendazole had no apparent inhibition on the action of trichlorfon to D. vastator . The minimum effective exposure time was 24 h and shorter exposure times, even at high dose levels, were not effective. The combination had no apparent toxic effect on fish, except possibly catfish, and field tests in various geographical areas of the United States showed that the combination was effective in all cases.  相似文献   

12.
Two experiments were conducted over 2 years in commercial potato fields in Shropshire, UK, to evaluate the compatibility of the nematicide aldicarb with commercial inocula of arbuscular mycorrhizal fungi (AMF) in the control of the potato cyst nematode Globodera pallida. The AMF used were Vaminoc (mixed-AMF inoculum), Glomus intraradices (BioRize BB-E) and G. mosseae (isolate BEG 12). In the absence of AMF, the in-soil hatch of G. pallida increased 30% (P < 0.01) from wk-2 to wk-4 after planting. Inoculation of physiologically-aged potato (cv. Golden Wonder) tubers with AMF eliminated this delay in G. pallida hatch by stimulating a mean increase of 32% (P < 0.01) in hatch within 2 wk after planting. In the aldicarb-treated plots in Experiment 1, G. pallida multiplication rate was 38% lower (P < 0.05) in roots of AMF-inoculated than noninoculated plants, but in Experiment 2, this effect was slightly lower (P = 0.07). In these plots, the single AMF inocula showed also a weak trend (P = 0.10) towards greater tuber yields relative to their noninoculated counterparts. Mycorrhization therefore appears to enhance the efficacy of carbamate nematicides against G. pallida and consequently more research is proposed to validate these findings and fully explore the potential of this model.  相似文献   

13.
Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.  相似文献   

14.
 We have used a genotype-independent transformation system involving particle gun bombardment of immature embryos to genetically engineer rice as part of a programme to develop resistance to nematodes. Efficient tissue culture, regeneration, DNA delivery and selection methodologies have been established for elite African varieties (‘ITA212’, ‘IDSA6’, ‘LAC23’, ‘WAB56-104’). Twenty-five transformed clones containing genes coding for an engineered cysteine proteinase inhibitor (oryzacystatin-IΔD86, OC-IΔD86), hygromycin resistance (aphIV) and β-glucuronidase (gusA) were recovered from the four varieties. Transformed plants were regenerated from all clones and analysed by PCR, Southern and western blot. Detectable levels of OC-IΔD86 (up to 0.2% total soluble protein) in plant roots were measured in 12 out of 25 transformed rice lines. This level of expression resulted in a significant 55% reduction in egg production by Meloidogyne incognita. Received: 4 August 1997 / Accepted: 22 August 1997  相似文献   

15.
In electrophoretic analyses, extracts of Xenopus laevis neurulae exhibited activities digesting yolk proteins maximally at pH4.8. These activities were completely inhibited by a mixture of pepstatin A and Z-Phe-Phe-CHN2, thus being identifiable as cathepsin D and cysteine proteinase. The electrophoretic profiles of yolk proteins cleaved by embryonic extracts changed at gastrula stages; the profile before stage 13 was the same as that given by cathepsin D treatment and the profile at stage 13 was a combination of the profile given by cathepsin D treatment and that given by cysteine proteinase treatment. Quantitative measurement of enzyme activities showed that the cathepsin D activity that was preserved from the beginning of development increased from stages 13 to 25 and decreased thereafter, whereas the cysteine proteinase activity appeared at stage 13, gradually increased until stage 35 and strongly increased thereafter. Immunoblot analyses showed that the 43 kDa form of cathepsin D was processed to its 36 kDa form, presumably by cysteine proteinase. This change can explain the increase of cathepsin D activity at stage 13 and thereafter. Immunofluorescent staining with the antibody against cysteine proteinase occurred in mesodermal and ectodermal cells other than neural ones at stages 13–24, and in the endodermal cells at stages 24–36. Faint staining in the neural ectoderm persisted from stages 18 to 36. Immunoelectron microscope observation showed that what stained was the superficial layer of yolk platelets. All these results indicate that cysteine proteinase plays a key role in the initiation of yolk digestion during embryonic development.  相似文献   

16.
We present field observations of carbon isotope discrimination (Δ) and internal conductance of CO2 ( g i) collected using tunable diode laser spectroscopy (TDL). Δ ranged from 12.0 to 27.4‰ over diurnal periods with daily means from 16.3 ± 0.2‰ during drought to 19.0 ± 0.5‰ during monsoon conditions. We observed a large range in g i, with most estimates between 0.04 and 4.0  µ mol m−2 s−1 Pa−1. We tested the comprehensive Farquhar, O'Leary and Berry model of Δ (Δcomp), a simplified form of Δcompsimple) and a recently suggested amendment (Δrevised). Sensitivity analyses demonstrated that varying g i had a substantial effect on Δcomp, resulting in mean differences between observed Δ (Δobs) and Δcomp ranging from 0.04 to 9.6‰. First-order regressions adequately described the relationship between Δ and the ratio of substomatal to atmospheric CO2 partial pressure ( p i/ p a) on all 3 d, but second-order models better described the relationship in July and August. The three tested models each best predicted Δobs on different days. In June, Δsimple outperformed Δcomp and Δrevised, but incorporating g i and all non-photosynthetic fractionations improved model predictions in July and August.  相似文献   

17.
In stroke and several neurodegenerative diseases, malfunction of glutamate (Glu) transporters causes Glu accumulation and triggers excitotoxicity. Many details on the cascade of events in the neurodegenerative process remain unclear. As molecular components of glutamatergic synapses are assembled in Caenorhabditis elegans and as many fundamental cellular processes are conserved from nematodes to humans, we studied Glu-induced necrosis in C. elegans and probed its genetic requirements. We combined Δglt-3 , a Glu transporter-null mutation, with expression of a constitutively active form of the alpha subunit of the G protein Gs. While neither Δglt-3 nor expression of the constitutively active form of the alpha subunit of the G protein Gs is severely toxic to C. elegans head interneurons, their combination induces extensive neurodegeneration. Δglt-3 -dependent neurodegeneration acts through Ca2+-permeable Glu receptors of the α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) subtype, requires calreticulin function, and is modulated by calcineurin and type-9 adenylyl cyclase (AC9). We further show that mammalian AC9 hyperactivates mammalian AMPA-receptors (AMPA-Rs) in a Xenopus oocyte expression system, supporting that the relationship between AMPA-Rs hyperactivation and AC9 might be conserved between nematodes and mammals. AMPA-Rs–AC9 synergism is thus critical for nematode excitotoxicity and could potentially be involved in some forms of mammalian neurodegeneration.  相似文献   

18.
19.
The proteinase activity present in homogenates of trophozoites of Giardia lamblia , active on azocasein and urea-denaturated hemoglobin, was separated into two different enzymes by a series of purification procedures. These procedures included gel filtration on Fractogel TSK HW-55 (F), organomercurial agarose affinity chromatography, and ion exchange chromatography on DEAE-cellulose. By chromatography on Sephadex G-100, two purified enzymes exhibited relative molecular weights of Mr= 95,000 and 35,000 ± 10%, respectively. On the basis of inhibition by thiol reagents and abrogation of this effect by dithiothreitol and cysteine, they were identified as cysteine proteinases. Proteinase I (Mr= 95,000) and proteinase II (Mr= 35,000) were active against the β-chain of insulin releasing characteristic fragments. However, differences in substrate specificities of the two enzymes could be observed by using synthetic peptides that represent sequences 1–6, 8–18, and 20–30 of the insulin β-chain. Furthermore, the synthetic tetrapeptides Arg-Gly-Phe-Phe, Arg-Gly-Leu-Hyp, and Arg-Arg-Phe-Phe were hydrolyzed by the two proteinases releasing Phe-Phe and Leu-Hyp, respectively. Compared with Arg-Gly-Phe-Phe, the rates of hydrolysis of Arg-Gly-Leu-Hyp and Arg-Arg-Phe-Phe at substrate concentrations of 1 mM were 91% and 63% (proteinase I) and 80% and 57% (proteinase II), respectively.  相似文献   

20.
Heat resistance of the Pseudomonas fluorescens P-26 proteinase in terms of D -value was studied in whole milk, skim milk, whey and 0.05 mol 1-1 phosphate buffer at 72.5, 130, 135, 140, 145 and 150°C subsequent to its partial purification through (NH4)2 SO4 precipitation (45–65% saturation) and solvent fractionation with 1.0 to 2.0 volumes of isopropanol. The D -value was maximum for the proteinase at all temperatures when determined in whole milk ( D 150= 0.088).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号